Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо Федеральное посударственное автономное образовательное учреждение Дата подписания: 15.11.2023 15:13:17

высшего образования

Уникальный профрациональный исследовательский технологический университет «МИСИС» d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Термодинамика и кинетика металлургических процессов

Закреплена за подразделением Кафедра металлургии стали, новых производственных технологий и защиты металлов

Направление подготовки

22.03.02 МЕТАЛЛУРГИЯ

Профиль

Квалификация Инженер-исследователь

Форма обучения очная Общая трудоемкость **83ET**

Часов по учебному плану 288 Формы контроля в семестрах:

в том числе: экзамен 5

136 аудиторные занятия 98 самостоятельная работа часов на контроль 54

Распределение часов дисциплины по семестрам

				-
Семестр (<Курс>.<Семестр на курсе>)	5 (3	3.1)		Итого
Недель	1	8		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	68	68	68	68
Лабораторные	34	34	34	34
Практические	34	34	34	34
Итого ауд.	136	136	136	136
Контактная работа	136	136	136	136
Сам. работа	98	98	98	98
Часы на контроль	54	54	54	54
Итого	288	288	288	288

Программу составил(и):

д.т.н., профессор, Павлов Александр Васильевич

Рабочая программа

Термодинамика и кинетика металлургических процессов

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - бакалавриат Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС» по направлению подготовки 22.03.02 МЕТАЛЛУРГИЯ (приказ от 28.06.2023 г. № 292 о.в.)

Составлена на основании учебного плана:

22.03.02 МЕТАЛЛУРГИЯ, 22.03.02-БМТ-23_6-ПП.plx , утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.06.2023, протокол № 5-23

Утверждена в составе ОПОП ВО:

22.03.02 МЕТАЛЛУРГИЯ, , утвержденной Ученым советом НИТУ МИСИС 22.06.2023, протокол № 5-23

Рабочая программа одобрена на заседании

Кафедра металлургии стали, новых производственных технологий и защиты металлов

Протокол от 09.06.2022 г., №11

Руководитель подразделения А.В. Дуб

1. ЦЕЛИ ОСВОЕНИЯ

1.1 Научить использованию основных законов и понятий физической химии для расчетов и анализа термодинамических и кинетических закономерностей процессов, протекающих в металлургических системах, разработке на этой основе технологических рекомендаций, направленных на повышение эффективности производства и качества продукции.

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
	Блок ОП: Б1.В.ДВ.01
2.1	Требования к предварительной подготовке обучающегося:
2.1.1	ARTCAD
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1	Инжиниринг машин и агрегатов производства металлоизделий
2.2.2	Логистика и экодизайн технологий чёрной металлургии
2.2.3	Металлургия алюминия и магния
2.2.4	Многокомпонентные диаграммы состояния
2.2.5	Научно-исследовательская работа
2.2.6	Научно-исследовательская работа
2.2.7	Научно-исследовательская работа
2.2.8	Научно-исследовательская работа
2.2.9	Научно-исследовательская работа
2.2.10	Научно-исследовательская работа
2.2.11	Научно-исследовательская работа
2.2.12	Научные основы нанесения покрытий
2.2.13	Основы бизнеса в металлургии
2.2.14	Основы электрометаллургического производства
2.2.15	Производство стали в конвертерах
2.2.16	Процессы формования и спекания металлических порошков
2.2.17	Ресурсосбережение и экология современных процессов обработки металлов давлением
2.2.18	Рециклинг металлов
2.2.19	Теория термической обработки металлов и основы эксперимента
2.2.20	Технология литейного производства
2.2.21	Физико-химические процессы в литейном производстве
2.2.22	Современные инструментальные методы и средства контроля параметров работы металлургических агрегатов
2.2.23	Компьютерное проектирование процессов и технологий ОМД
2.2.24	Конструирование литейной оснастки, раздел 1
2.2.25	Металловедение, часть 1
2.2.26	Металлургия тугоплавких и рассеянных редких металлов
2.2.27	Металлургия тяжелых цветных металлов
2.2.28	Методы анализа структуры металлов и сплавов
2.2.29	Метрология и измерительная техника
2.2.30	Производство отливок из сплавов цветных металлов
2.2.31	Современные методы производства сплошных и полых изделий
2.2.32	Теория и технология производства стали в электропечах
2.2.33	Теплотехника и экодизайн металлургических печей
2.2.34	Технологии и оборудование для модификации поверхности
2.2.35	Технология композиционных материалов
2.2.36	Закономерности и механизмы формирования материалов в аддитивных технологиях
2.2.37	Закономерности, механизмы и диагностика процессов самораспространяющегося высокотемпературного синтеза
2.2.38	Информационные технологии управления металлургическими печами
2.2.39	Конструирование литейной оснастки, раздел 2
2.2.40	Логистика вторичных ресурсов
2.2.41	Металловедение, часть 2

2.2.42	Металлургия благородных металлов
2.2.43	Металлургия редкоземельных и радиоактивных металлов
2.2.44	Метрология, стандартизация и методы контроля и анализа веществ
2.2.45	Модельное производство
2.2.46	Огнеупоры металлургического производства
2.2.47	Основы промышленного дизайна и ювелирного дела
2.2.48	Пористые порошковые материалы. Порошковые материалы для узлов трения. Порошковые алмазосодержащие материалы.
2.2.49	Производство отливок из стали и чугуна
2.2.50	Производство тяжелых цветных металлов
2.2.51	Производство ферросплавов
2.2.52	Разливка стали и спецэлектрометаллургия
2.2.53	Технологические линии и комплексы ОМД
2.2.54	Физико-механические свойства металлов
2.2.55	Химия окружающей среды
2.2.56	Цифровое моделирование процессов и инструмента ОМД
2.2.57	Защитные покрытия на металлопродукции
2.2.58	Информационные технологии в деформационной обработке металлов
2.2.59	Комплексное использование сырья и техногенных материалов
2.2.60	Конструкционные порошковые материалы общемашиностроительного и специального назначения
2.2.61	Материаловедение и термообработка металлов и сплавов
2.2.62	Материаловедение неметаллических материалов
2.2.63	Методы исследования технологических процессов и оборудования
2.2.64	Методы оценки качества и исследования металлургических свойств техногенного сырья и вторичных ресурсов
2.2.65	Моделирование процессов и объектов в металлургии
2.2.66	Наилучшие доступные технологии в металлургии
2.2.67	Оборудование литейных цехов
2.2.68	Основы аддитивных технологий
2.2.69	Основы процессов самораспространяющегося высокотемпературного синтеза
2.2.70	Проектирование новых и реконструкция действующих литейных цехов
2.2.71	Производство благородных металлов
2.2.72	Производство легких металлов
2.2.73	Производство отливок из сплавов цветных металлов
2.2.74	Производство редких металлов
2.2.75	Производство слитков из сплавов цветных металлов
2.2.76	Современные методы исследования металлических материалов
2.2.77	Современные процессы в металлургии и материаловедении и методы их исследования
2.2.78	Специальные способы литья
2.2.79	Теория металлургических процессов
2.2.80	Термодинамические расчеты и анализ фазовых диаграмм многокомпонентных систем
2.2.81	Технологии защиты оборудования и металлопродукции от коррозии
2.2.82	Технологии защиты оборудования и металлопродукции от коррозии Технологические процессы пластической обработки металлов и сплавов
2.2.83	Технологи композиционных материалов
2.2.84	Экология металлургического производства
2.2.85	Автоматизация машин и агрегатов ОМД
2.2.86	Диагностика и экспертиза коррозионных разрушений металлов
2.2.87	Дизайн литого изделия
2.2.88	Инновационные технологии и оборудование ферросплавного производства
2.2.89	Компьютерное проектирование и инжиниринг
2.2.90	Материаловедческие основы производства твердых сплавов
2.2.91	Методы аттестации наноструктурированных поверхностей
2.2.92	Моделирование технологических процессов
2.2.93	Мониторинг работы металлургического предприятия
2.2.94	Основы теории сварки и пайки литых изделий
, .	1r

2.2.95	Особенности получения высокоточных отливок
2.2.96	Отливки для металлургической и горнодобывающей отраслей
2.2.97	Порошковые материалы для электротехнической промышленности. Тугоплавкие порошковые материалы
2.2.98	Прикладная термодинамика и кинетика металлургических процессов
2.2.99	Производство прямовосстановленного железа
2.2.100	Промышленная экология и технологии декарбонизации
2.2.101	Разливка стали и спецэлектрометаллургия
2.2.102	Ресурсо- и энергосберегающие технологии производства благородных металлов
2.2.103	Ресурсо- и энергосберегающие технологии производства меди, никеля и сопутствующих элементов
2.2.104	Ресурсо- и энергосберегающие технологии производства тугоплавких и рассеянных редких металлов
2.2.105	СВС-технологии получения неорганических материалов
2.2.106	Современные производственные технологии
2.2.107	Теплоэнергетика и вторичные энергоресурсы
2.2.108	Технологии Big Data
2.2.109	Технология индустриальных процессов деформационной обработки металлов и сплавов
2.2.110	Цифровое моделирование процессов и инструмента ОМД
2.2.111	Экодизайн и зеленые технологии
2.2.112	Экология литейного производства
2.2.113	Автоматизация процессов экстракции
2.2.114	Аддитивные технологии в литейном производстве
2.2.115	Анализ данных и аналитика в принятии решений
2.2.116	Аффинаж благородных металлов
2.2.117	Дефекты в отливках, способы выявления и устранения
2.2.118	Защита интеллектуальной собственности и патентоведение
2.2.119	Инженерия биоповерхностей
2.2.120	Инновационное производство высоколегированной стали и сплавов
2.2.121	Конструирование и моделирование металлических материалов
2.2.122	Материалы на основе углерода
2.2.123	Металловедение, часть 3
2.2.124	Металлургические методы переработки промышленных и бытовых отходов
2.2.125	Методы и инструменты бережливого производства
2.2.126	Моделирование литейных процессов
2.2.127	Обеспечение единства измерений трибологических и механических свойств
2.2.128	Оборудование и технологии специальной электрометаллургии
2.2.129	Обращение со шлаками и шламами
2.2.130	Планирование эксперимента
2.2.131	Разработка и реализация предпринимательских проектов
2.2.132	Ресурсо- и энергосберегающие технологии производства алюминия и магния
2.2.133	Ресурсо- и энергосберегающие технологии производства редкоземельных и радиоактивных металлов
2.2.134	Ресурсо- и энергосберегающие технологии производства свинца, цинка и сопутствующих элементов
2.2.135	Совмещенные процессы деформационно-термической обработки
2.2.136	Современные методы металлургии и машиностроения
2.2.137	Современные технологические решения в деформационной обработке металлов и сплавов
2.2.138	Термодинамические расчеты многокомпонентных диаграмм состояния
2.2.139	Техногенное сырье и вторичные ресурсы
2.2.140	Технологические основы аддитивного производства и специальной электрометаллургии
2.2.141	Технология производства твердых сплавов
2.2.142	Экологическая экспертиза
2.2.143	Научно-исследовательская работа
2.2.144	Научно-исследовательская работа
2.2.145	Научно-исследовательская работа
2.2.146	Научно-исследовательская работа
2.2.147	Научно-исследовательская работа
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2.2.148	Научно-исследовательская работа
2.2.149	Научно-исследовательская работа
2.2.150	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.151	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.152	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.153	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.154	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.155	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.156	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.157	Обогащение руд
2.2.158	Оборудование для процессов порошковой металлургии
2.2.159	Оборудование и технологии сталеплавильных цехов
2.2.160	Основы минералогии и петрографии
2.2.161	Прикладная кристаллография
2.2.162	Проектирование технологии изготовления отливок
2.2.163	Теория индустриальных процессов деформационной обработки металлов и сплавов
2.2.164	Комплексное использование сырья и отходов глиноземной промышленности

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ПК-2: Способен к анализу и синтезу в технологии материалов

Знать

ПК-2-31 способы анализа термодинамических и кинетических данных

ПК-2-31 способы анализа термодинамических и кинетических данных

ПК-1: Способен выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы в области процессов технологии материалов

Знать:

ПК-1-31 методы моделирования физических, химических и технологических процессов

ПК-1-31 методы моделирования физических, химических и технологических процессов

ПК-2: Способен к анализу и синтезу в технологии материалов

Уметь:

ПК-2-У1 прогнозировать термодинамические пределы извлечения компонентов из исходных материалов, рафинирования металла от примесей при различных методах производства

ПК-2-У2 анализировать кинетику металлургических процессов по экспериментальным данным и на основе априорных оценок составлять кинетические модели химических процессов при взаимодействии компонентов металлургических систем

ПК-2-У1 прогнозировать термодинамические пределы извлечения компонентов из исходных материалов, рафинирования металла от примесей при различных методах производства

ПК-1: Способен выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы в области процессов технологии материалов

Уметь:

ПК-1-У1 использовать термодинамический и кинетический методы для расчетов равновесных характеристик фаз и компонентов в металлургических системах и распределения компонентов между участвующими в процессах фазами

ПК-1-У1 использовать термодинамический и кинетический методы для расчетов равновесных характеристик фаз и компонентов в металлургических системах и распределения компонентов между участвующими в процессах фазами

ПК-1-У2 составлять кинетические модели химических процессов при взаимодействии компонентов металлургических систем

ПК-1-У2 составлять кинетические модели химических процессов при взаимодействии компонентов металлургических систем

ПК-2: Способен к анализу и синтезу в технологии материалов

Уметь:

ПК-2-У2 анализировать кинетику металлургических процессов по экспериментальным данным и на основе априорных оценок составлять кинетические модели химических процессов при взаимодействии компонентов металлургических систем

Владеть:

ПК-2-В1 навыком самостоятельной работы с литературой для поиска информации об отдельных определениях, понятиях и терминах, объяснения их применения в практических ситуациях

ПК-2-В1 навыком самостоятельной работы с литературой для поиска информации об отдельных определениях, понятиях и терминах, объяснения их применения в практических ситуациях

ПК-1: Способен выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы в области процессов технологии материалов

Владеть:

ПК-1-В1 навыком логического творческого и системного мышления практических ситуациях

ПК-1-В1 навыком логического творческого и системного мышления практических ситуациях

		4. CTI	РУКТУР	А И СОДЕРЖА	ние			
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Термодинамика и кинетика газофазных и твёрдофазных реакций							
1.1	01. Определение металлургической системы. Способы анализа сложных изолированных металлургических систем. Открытые металлургические системы, равновесные и стационарные состояния. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1			
1.2	Проработка лекционного материала (Раздел №1, Лекция №1) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1			
1.3	02. Метод последовательных равновесий. Неравновесный термодинамический подход к описанию металлургических систем. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1			
1.4	Проработка лекционного материала (Раздел №1, Лекция №2) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1			
1.5	03. Основные компоненты газовых атмосфер металлургических систем. Химия и термодинамика основных газовых реакций. Сложные газовые атмосферы и способы расчета их равновесного состава и тепловых эффектов в изотермических условиях. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1			

1.6	Проработка лекционного	5	2	ПК-1-31 ПК-1-	Л1.1Л2.1		
	материала (Раздел №1,		_	У1 ПК-1-У2	Э1		
	Лекция №3) /Ср/			ПК-1-В1 ПК-2 -31 ПК-2-У1			
				ПК-2-У2 ПК-2			
1.7	04. Способы расчета	5	2	-B1 ПК-1-31 ПК-1-	Л1.1Л2.1		
1.7	равновесий в газовых	3	2	У1 ПК-1-У2	J11.1J1Z.1		
	атмосферах при			ПК-1-В1 ПК-2			
	неизотермических условиях. Расчет			-31 ПК-2-У1 ПК-2-У2 ПК-2			
	адиабатической			-B1			
	температуры горения газообразного топлива.						
	Диффузия в газах, законы и						
	параметры диффузии.						
	Зависимость коэффициента диффузии в газах от темпе-						
	ратуры и давления.						
	Диффузия в макро и микропорах. /Лек/						
1.8	Проработка лекционного	5	2	ПК-1-31 ПК-1-	Л1.1Л2.1		
	материала (Раздел №1, Лекция №4) /Ср/			У1 ПК-1-У2 ПК-1-В1 ПК-2	Э1		
	лекция лет / Ср/			-31 ПК-2-У1			
				ПК-2-У2 ПК-2			
1.9	05. Классификация твердых	5	2	-B1 ПК-1-31 ПК-1-	Л1.1Л2.1		
1.5	тел. Термодинамика	3	_	У1 ПК-1-У2	V11.1V12.1		
	твердотельных реакций и фазовых превращений.			ПК-1-В1 ПК-2 -31 ПК-2-У1			
	Гетерогенные процессы с			ПК-2-У2 ПК-2			
	участием твердых тел. /Лек/			-B1			
1.10	Проработка лекционного	5	2	ПК-1-31 ПК-1-	Л1.1Л2.1		
	материала (Раздел №1,			У1 ПК-1-У2	Э1		
	Лекция №5) /Ср/			ПК-1-В1 ПК-2 -31 ПК-2-У1			
				ПК-2-У2 ПК-2			
1.11	06. Роль внешних и	5	2	-В1 ПК-1-31 ПК-1-	Л1.1Л2.1		
	внутренних поверхностей.			У1 ПК-1-У2			
	Дефекты кристаллической структуры. Равновесная			ПК-1-В1 ПК-2 -31 ПК-2-У1			
	концентрация точечных			ПК-2-У2 ПК-2			
	дефектов. Термодинамика твердых растворов. /Лек/			-B1			
1.12	Проработка лекционного	5	2	ПК-1-31 ПК-1-	Л1.1Л2.1		
	материала (Раздел №1,			У1 ПК-1-У2	Э1		
	Лекция №6) /Ср/			ПК-1-В1 ПК-2 -31 ПК-2-У1			
				ПК-2-У2 ПК-2			
1.13	07. Фазовая диаграмма Fe-	5	2	-B1 ПК-1-31 ПК-1-	Л1.1Л2.1		
1.13	О. Строение оксидов,	3		У1 ПК-1-У2	J11.1J1Z.1		
	нестехиометричность			ПК-1-В1 ПК-2			
	оксидов. Оксиды железа и термодинамические			-31 ПК-2-У1 ПК-2-У2 ПК-2			
	условия их существования.			-B1			
	Структурные и термодинамические						
	особенности вюстита,						
	магнетита и гематита. /Лек/						

1.14	Проработка лекционного материала (Раздел №1, Лекция №7) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
1.15	08. Равновесие между твердыми оксидами железа и окислительной и восстановительной газовой атмосферой. Диффузионноконтролируемые процессы восстановления оксидов. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
1.16	Проработка лекционного материала (Раздел №1, Лекция №8) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
1.17	Подготовка к практическим занятиям №1, №2, №3, №4 /Cp/	5	5	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2 Э1		
1.18	Практическая работа №1: Расчет равновесия многокомпонентных газовых атмосфер при заданных условиях. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		
1.19	Практическая работа №2: Расчета адиабатической температуры горения газового топлива. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
1.20	Практическая работа №3: Решение задач по определению диффузионных параметров газовых атмосфер. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		
1.21	Практическая работа №4: Решение задач на кинетику гетерогенных диффузионно -контролируемых реакций с участием твердых тел. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		P1
1.22	Подготовка к лабораторной работе №1 /Ср/	5	5	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.3л3.1 Э1		
1.23	Лабораторная работа №1: Построение фазовой диаграммы Fe-O с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.3Л3.1		P2
	Раздел 2. Термодинамика процессов с участием металлических и шлаковых растворов						

2.1	01. Термодинамика металлических растворов. Компоненты расплавов. Реальные растворы с различными от идеального поведения — от законов Рауля и Генри. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
	материала (Раздел №2, Лекция №1) /Ср/		2	У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Э1		
2.3	02. Принятые в металлургии типы стандартных состояний реагентов и компонентов растворов и связанные с ними виды активностей компонентов. Коэффициенты активности и их применение в практических расчетах. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.4	Проработка лекционного материала (Раздел №2, Лекция №2) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
2.5	03. Применение теории регулярных растворов (ТРР) для решения практических задач. Оценка температурной и концентрационной зависимостей активностей компонентов в реальных металлических растворах с помощью ТРР. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
2.6	Проработка лекционного материала (Раздел №2, Лекция №3) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
2.7	04. Применение в металлургических расчетах усовершенствованных вариантов ТРР: тео-рии субрегулярных растворов (ТСРР), теории квазирегулярных растворов (ТКРР) /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.8	Проработка лекционного материала (Раздел №2, Лекция №4) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		

2.9	05. Метод параметров взаимодействия Вагнера для расчета активностей компонентов в многокомпонентных растворах. Типы параметров взаимодействия, их определение. Оценка неизвестных значений параметров. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.10	Проработка лекционного материала (Раздел №2, Лекция №5) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
2.11	06. Расчёт равновесия реакций с участием растворов на примере раскисления стали. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
2.12	Проработка лекционного материала (Раздел №2, Лекция №6) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
2.13	07. Металлургические шлаки, их роль в восстановительной и окислительной плавке. Природа и свойства шлаков. Термодинамические характеристики шлаков: активность компонентов, сорбционная ёмкость и др. Равновесие между металлом шлаком. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.14	Проработка лекционного материала (Раздел №2, Лекция №7) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.15	08. Прогнозирование термодинамических характеристик шлаков с помощью молекулярной и ионной теории. Применение для описания шлаков теорий совершенных и регулярных ионных растворов. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.16	Проработка лекционного материала (Раздел №2, Лекция №8) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		

2.17	09. Влияние окисленности	5	2	ПК-1-31 ПК-1-	Л1.1Л2.1		
	шлака (равновесного давления кислорода) на его термодинамические и технологические характеристики. Теория шлаков как фаз с коллективизированными электронами. /Лек/			У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1			
2.18	Проработка лекционного материала (Раздел №2, Лекция №9) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.19	10. Компьютерный расчет равновесия между металлом шлаком с помощью современных пакетов прикладных термодинамических программ. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.20	Проработка лекционного материала (Раздел №2, Лекция №10) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
2.21	11. Термодинамика расплавов железо — углерод — кислород. Влияние температуры, давления и содержания легирующих элементов на термодинамические характеристики компонентов. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.22	Проработка лекционного материала (Раздел №2, Лекция №11) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.23	12. Обезуглероживание хромсодержащих расплавов. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.24	Проработка лекционного материала (Раздел №2, Лекция №12) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.25	13. Термодинамический анализ взаимодействия расплавов с оксидами. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		

2.26	Пропоботиля	5	2	ПИ 1 21 ПИ 1	П1 1 П2 1	Ι	
2.26	Проработка лекционного материала (Раздел №2, Лекция №13) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
2.27	14. Расчет термодинамических характеристик раскисления стали. Влияние температуры, давления и содержания легирующих элементов на эффективность раскисления. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.28	Проработка лекционного материала (Раздел №2, Лекция №14) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
2.29	15. Термодинамика растворов азота и водорода в расплавах. Влияние температуры, давления и содержания легирующих элементов на растворимость газов. Расчет растворимости газов в расплавах стали. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
2.30	Проработка лекционного материала (Раздел №2, Лекция №15) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.31	16. Расчет нитридообразования в стали. Термодинамика сплавов железо — сера и железо — фосфор. Влияние окислительного потенциала на распределение серы и фосфора между шлаком и металлом. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
2.32	Проработка лекционного материала (Раздел №2, Лекция №16) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
2.33	Подготовка к практическим занятиям №5, №6, №7, №8, №9, №10, №11, №12 /Ср/	5	5	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2 Э1		
2.34	Практическая работа №5: Расчёт активностей компонентов металлических расплавов. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		

2.35	Практическая работа №6: Схема расчёта с участием металлического расплава. Расчёт растворимости газов. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.36	Практическая работа №7: Определение энергии Гиббса сложной реакции и активностей компонентов в расплаве /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.37	Практическая работа №8: Расчёт активностей компонентов шлаковых расплавов по различным моделям. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.38	Практическая работа №9: Компьютерный расчет равновесия между металлом шлаком с помощью пакетов прикладных термодинамических программ. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.39	Практическая работа №10: Расчёт термодинамических пределов окисления углерода. Обезуглероживание хромсодержащих расплавов. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.40	Практическая работа №11: Расчёт раскислительной способности отдельных элементов и комплексного раскисления. Расчет количества и состава неметаллических включений при раскислении стали /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
2.41	Практическая работа №12: Расчёт равновесия металлических растворов с оксидами, нитридами и другими соединениями. Условия образования неметаллических включений в металле. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		Р3
2.42	Подготовка к лабораторным работам №2, №3, №4, №5, №6 /Ср/	5	5	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.3Л3.1 Э1		
2.43	Инструктаж по технике безопасности при проведении лабораторных работ /Лаб/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.3Л3.1		

2.44	Лабораторная работа №2: Моделирование обезуглероживания железоуглеродистых расплавов с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.3Л3.1		
	Моделирование окислительной дефосфорации стали с помощью пакета прикладных программ /Лаб/	-		У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1			
2.46	Лабораторная работа №4: Моделирование раскисления стали алюминием, кремнием и марганцем с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.3Л3.1		
2.47	Лабораторная работа №5: Моделирование дефосфорации стали с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.3Л3.1		
2.48	Лабораторная работа №6: Моделирование нитридообразования в стали с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.3Л3.1		P4
	Раздел 3. Кинетика процессов с участием металлических и шлаковых растворов						
3.1	процессов с участием металлических и	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.1	процессов с участием металлических и шлаковых растворов 01. Роль поверхностных явлений в металлургических реакциях. Уравнения изотермы для разбавленных и совершенных металлических растворов. Поверхностная концентрация компонента. Учет поверхностных явлений в кинетическом	5	2	У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2	Л1.1Л2.1		

3.4	Проработка лекционного материала (Раздел №3, Лекция №2) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1	Л1.1Л2.1 Э1		
				ПК-2-У2 ПК-2 -В1			
3.5	03. Общая характеристика кинетики металлургических реакций. Диффузионная и кинетическая области реагирования. Конвективная и молекулярная диффузия в металлургических процессах. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.6	Проработка лекционного материала (Раздел №3, Лекция №3) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	л1.1л2.1 Э1		
3.7	04. Диффузионные и гидродинамические пограничные слои. Основные законы, частные решения. Методы определения диффузионных характеристик в металле, шлаке, газовой фазе. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.8	Проработка лекционного материала (Раздел №3, Лекция №4) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
3.9	05. Признаки для выявления лимитирующей стадии процесса. Коэффициент массопереноса. Основные закономерности и математические модели кинетики плавления и растворения в расплаве твердых тел (лом, металлические добавки, легирующие, ферросплавы). /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.10	Проработка лекционного материала (Раздел №3, Лекция №5) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1 Э1		
3.11	06. Влияние ПАВ на скорость гетерогенных процессов Кинетика испарения компонентов в условиях атмосферы и вакуума. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		_

3.12	Проработка лекционного материала (Раздел №3,	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2	Л1.1Л2.1 Э1		
	Лекция №6) /Ср/			ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	31		
3.13	07. Кинетика адсорбции и десорбции азота и водорода в системе металл — газовая фаза. Кинетические уравнения, определение лимитирующего звена. Механизм процесса. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.14	Проработка лекционного материала (Раздел №3, Лекция №7) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
3.15	08. Кинетика обезуглероживания железоуглеродистых расплавов. Критические концентрации углерода. Химическая и диффузионная области реагирования. Влияние легирующих элементов. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
3.16	Проработка лекционного материала (Раздел №3, Лекция №8) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.1л2.1 Э1		
3.17	09. Скорость перехода серы из железоуглеродистых расплавов в шлак и газовую фазу. Кинетические и диффузионные уравнения. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.1Л2.1		
3.18	Проработка лекционного материала (Раздел №3, Лекция №9) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		
3.19	10. Влияние перемешивания и свойств пограничных фаз. Закономерности образования и удаления газовых пузырей из жидкого расплава. Условия гомогенного и гетерогенного зарождения. /Лек/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1		
3.20	Проработка лекционного материала (Раздел №3, Лекция №10) /Ср/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.1Л2.1 Э1		

3.21	Подготовка к практическим	5	5	ПК-1-31 ПК-1-	Л1.2		
	занятиям №13, №14, №15, №16, №17 /Ср/	-		У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	91		
3.22	Практическая работа №13: Вычисление поверхностного натяжения расплавов на основе железа и поверхностных концентраций компонентов /Пр/	5	2	-В1 ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		
3.23	Практическая работа №14: Расчеты по молекулярной и конвективной диффузии в расплавах. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		
3.24	Практическая работа №15: Расчет констант скоростей химических реакций и коэффициентов массопереноса для кинетики адсорбции и десорбции азота. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.2		P5
3.25	Практическая работа №16: Кинетика обезуглероживания железоуглеродистых расплавов. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		P5
3.26	Практическая работа №17: Макрокинетика десульфурации расплава. Определения кинетических характеристик. /Пр/	5	2	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.2		
3.27	Подготовка к лабораторным работам №7, №8 /Ср/	5	5	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	л1.3л3.1 Э1		
3.28	Лабораторная работа №7: Моделирование удаления водорода из жидкой стали при обезуглероживании с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -В1	Л1.3Л3.1		
3.29	Лабораторная работа №8: Моделирование обезуглероживания высокохромистого расплава с помощью пакета прикладных программ /Лаб/	5	4	ПК-1-31 ПК-1- У1 ПК-1-У2 ПК-1-В1 ПК-2 -31 ПК-2-У1 ПК-2-У2 ПК-2 -B1	Л1.3Л3.1		Р6

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ					
5.	5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки					
Код КМ	Контрольное мероприятие	Проверяемые индикаторы компетенций	Вопросы для подготовки			
KM1	Экзамен	ПК-2-31;ПК-2-	1. Сложные металлургические системы. Химические и физико-			

УП: 22.03.02-БМТ-23 6-ПП.plx

стр. 19

У1;ПК-2-У2;ПК-2-

химические особенности. Способы анализа.

- 2. Газовые атмосферы металлургических агрегатов. Классификация, химические свойства, кислородный потенциал.
- 3. Условия равновесия в газовых атмосферах. Способы расчета равновесного состава в сложных газовых системах при изотермических условиях.
- 4. Равновесие в газах при адиабатических условиях. Расчет температуры горения газового топлива.
- 5. Кинетические свойства газовых атмосфер металлургических систем. Диффузия в газах, капиллярная диффузия.
- 6. Твердые металлургические фазы. Кристаллическая структура, химическая связь, дефекты кристаллической структуры.
- 7. Диаграмма железо кислород. Оксиды железа, вюстит и проблема нестехиометричности.
- 8. Вопрос о формах существования компонентов в металлических и шлаковых расплавах. Какие компоненты растворов приняты в различных теориях металлических и шлаковых растворов?
- 9. В системе, содержащей в начальный момент времени 2,5 моль O2, 1 моль CH4, 0,5 моль CO и 1 моль CO2 протекают следующие реакции: C+CO2 = 2CO, CH4 + $\frac{1}{2}$ O2 = CO+2H2, Условия таковы, что Kp1 =0,1; Kp2 = 100. Оценить конечный состав.
- 10. Стандартные состояния реагентов в металлургических процессах, в т.ч. компонентов расплавов. Количественное описание отклонений от законов Рауля и Генри.
- 11. Виды коэффициентов активности и их определение при проведении расчетов. Параметры взаимодействия компонентов.
- 12. В конвертере при 1873 Л проводят кислородную продувку железоуглеродистого расплава. Критическая концентрация углерода составила 05%. Эффективная константа скорости обезуглероживания во внешнедиффузионной области k1=0,2% мин; а во внутридиффузионной области k2=0,4 мин -1. Оценить длительность обезуглероживания с 3 до 0,05% С. Как изменится продолжительность обезуглероживания, если его провести при 1923 К с тем же расходом кислорода. Энергии активации процесса во внешнедиффузионной области Евнеш.=10 кДж/моль, во внешнедиффузионной области E=80 кДж/моль.
- 13. Расчет растворимостей газов в жидком железе и многокомпонентных расплавах на его основе (при различных температурах и давлениях).
- 14. Железоуглеродистый расплав подвергают глубокому обезуглероживанию в области концентраций, находящихся ниже критических. Плавка, проведенная при 1873 К показала, что для снижения концентрации углерода с 0,2 до 0,05% потребовалось 5 минут. Сколько времени потребуется для получения такого же обезуглероживания, если провести его при температуре 1973 К? Энергия активации процесса E=80 кДж/моль.
- 15. Теория регулярных растворов (ТРР). Основные допущения. Применение в термодинамических расчетах металлургических процессов. Особенности теории субрергулярных растворов (ТСРР).
- 16. Жидкую сталь 03X18H11 плавят в вакуумной индукционной печи при остаточном давлении Рост.=1 Па и температуре 1923 К. Рассчитать конечную концентрацию азота после 30-ти минутной выдержки расплава в вакууме, Если начальная концентрация была равна 0,05%. Коэффициент массопередачи азота в металле В = 10-4 м/с, отношение площади зеркала металла к объему F/V = 8м-1. Принять, что процесс деазотации лимитируется внутренней массопередачей. Энергия активации процесса E= 60 кДж/моль.
- 17. Теория квазирегулярных растворов (ТКРР). Основные допущения. Применение в термодинамических расчетах металлургических процессов.
- 18. Жидкая сталь 12X17 при 1973 К Контактирует с воздухом. За какое время концентрация азота в металле повысится с 0,02 до 0,14%. Принять, что процесс насыщения стали азотом лимитируется внутренним массопереносом. Коэффициент массопередачи азота при 1873 К равен $\beta = 1*10-4$ м/с. Эффективная энергия активации процесса равна E=80 кДж/моль. Отношение площади зеркала металла к объему равно F/V=10 м-1.
- 19. Оценка температурной и концентрационной зависимости

	коэффициента активности по одному известному значению (при
	1873 К и одной концентрации).
	20. Термодинамика раскисления стали.
	21. Задача: Во сколько раз коэффициент диффузии N2 отличается
	от коэффициента диффузии СО в порах магнетита со средним
	размером 0,001 мкм при одной и той же температуре?
	22. Молекулярная теория шлаковых расплавов. Основные идеи и
	допущения. Что можно рассчитать с помощью этой теории. Какие
	требуются исходные данные для получения справочных диаграмм
	и уравнений?
	23. Задача: В исходный момент времени в системе протекают
	следующие реакции: $C + CO2 = 2 CO + H2o + co = H2 + co2 Имеется$
	2 моль CO, 2 моль CO2, 1 моль H2O и избыток С. Написать
	систему уравнений, позволяющую определить точный
	равновесный состав газовой фазы в системе при заданных Т и Р.
	24. Теория совершенных ионных растворов Темкина. Основные
	идеи и допущения. Что можно рассчитать с помощью этой теории
	и какие требуются исходные данные.
	25. Во сколько раз коэффициент диффузии N2 отличается от
	коэффициента диффузии СО в порах магнетита со средним
	размером 0,001 мкм при одной и той же температуре?
	26. Теория регулярных ионных растворов Кожеурова. Основные
	идеи и допущения. Что можно рассчитать и какие требуются
	исходные данные для получения справочных диаграмм и
	уравнений.
	27. Теория шлаков как фазы с коллективизированными
	электронами. Основные идеи и допущения. Объяснение и
5.2. Перечень работ, выполняемых по лисшиплине (Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)

5.2. Перечень работ, выполняемых по дисциплине (Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)

Код работы	Название работы	Проверяемые индикаторы компетенций	Содержание работы
P1	Домашняя работа 1	ПК-2-31;ПК-2-У1	Примерные задачи В системе, содержащей в начальный момент времени 2,5 моль O2, 1 моль CH4, 0,5 моль CO и 1 моль CO2 протекают следующие реакции: C+CO2 = 2CO, CH4 + $\frac{1}{2}$ O2 = CO+2H2, Условия таковы, что Kp1 =0,1; Kp2 = 100. Оценить конечный состав.
			Расчет растворимостей газов в жидком железе и многокомпонентных расплавах на его основе (при различных температурах и давлениях).
			Железоуглеродистый расплав подвергают глубокому обезуглероживанию в области концентраций, находящихся ниже критических. Плавка, проведенная при 1873 К показала, что для снижения концентрации углерода с 0,2 до 0,05% потребовалось 5 минут. Сколько времени потребуется для получения такого же обезуглероживания, если провести его при температуре 1973 К? Энергия активации процесса E=80 кДж/моль.
			сколько раз коэффициент диффузии N2 отличается от коэффициента диффузии CO в порах магнетита со средним размером 0,001 мкм при одной и той же температуре?
P2	Отчет по лабораторной работе 1		Написать отчет с итогами и выводами по выполнению компьютерной лабораторной работы - Построение фазовой диаграммы Fe-O
P3	Домашняя работа 2	ПК-2-В1	Растворение азота и нитридообразование в расплавах на основе железа. Влияние давления, температуры и легирующих элементов на взаимодействие азота с железом. Как рассчитать возможность нитридообразования в заданном расплаве?
			Рассчитать растворимость водорода в стали (индивидуальное задание) при давлении от 1 атм до 0,00001 атм
P4	Отчет по лабораторным работам 2-6	ПК-2-31;ПК-2- У1;ПК-2-У2;ПК-2- В1	По рассчитанным моделям по индивидуальному заданию составить отчет о рафинировании, заданной марки стали

P5	Домашняя работа 3	ПК-2-31;ПК-2- У2;ПК-2-В1	Рассчитать конечную концентрацию азота после 30-ти минутной выдержки расплава в вакууме, Если начальная концентрация была равна 0,05%. Коэффициент массопередачи азота в металле В = 10-4 м/с, отношение площади зеркала металла к объему F/V = 8м-1. Принять, что процесс деазотации лимитируется внутренней массопередачей. Энергия активации процесса Е= 60 кДж/моль. В конвертере при 1873 Л проводят кислородную продувку железоуглеродистого расплава. Критическая концентрация углерода составила 05%. Эффективная константа скорости обезуглероживания во внешнедиффузионной области k1=0,2%/мин; а во внутридиффузионной области k2 = 0,4 мин -1. Оценить длительность обезуглероживания с 3 до 0,05% С. Как изменится продолжительность обезуглероживания, если его провести при 1923 К с тем же расходом кислорода. Энергии активации процесса во внешнедиффузионной области Евнеш.=10 кДж/моль, во
P6	Отчет о	ПК-2-31;ПК-2-	внешнедиффузионной области E=80 кДж/моль. По заданной марке стали смоделировать процедуру
	лабораторных работах 8	У1;ПК-2-В1	обезуглероживания. Сформулировать рекомендации и выводы

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Для допуска к экзамену является обязательным выполнение:

- 1. Практических работ №1-№17
- 2. Лабораторных работ №1-№8
- 3. Домашних заданий №1, №2

Экзаменационный билет состоит из 2 заданий: теоретического вопроса и задачи.

Пример билета представлен в Приложении №1.

Остальные билеты находятся в распечатанном виде на кафедре.

Общая оценка складывается из средней оценки за теоретический вопрос и оценки за решение задачи:

Оценка за экзамен=0,5*(оценка за теоретический вопрос+оценка за решение задачи)

Оценка «отлично» (5) выставляется в случае, когда обучающийся исчерпывающе знает материал программы, понимаем его и прочно усвоил его. На вопросы дает уверенные и правильные ответы. В практических заданиях пользуется полученными знаниями. В устных ответах на вопрос обучающийся изъясняется литературно-правильным языком и не допускает ошибок. Оценка «хорошо» (4) выставляется в случае, когда обучающийся в достаточной степени знает материал программы, хорошо понимает его и прочно усвоил его. На вопросы дает правильные ответы, но делает незначительные ошибки. В практических заданиях пользуется полученными знаниями. В устных ответах на вопрос обучающийся изъясняется литературно-правильным языком и не делает грубых ошибок.

Оценка «удовлетворительно» (3) выставляется в случае, когда обучающийся знает базовую часть материала программы, но испытывает затруднение в конкретизации знаний. При ответе на вопросы делает ошибки. В практических заданиях испытывает затруднение и преодолевает их с небольшой помощью преподавателя. В письменных работах делает ошибки. Оценка «неудовлетворительно» (2) выставляется в случае, когда обучающийся знает небольшую часть базового материала. Отвечает на вопрос неуверенно и, как правило, при помощи наводящих вопросов преподавателя. В письменных работах допускает грубые ошибки.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Оценка освоения дисциплины производится на экзамене по экзаменационным билетам.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ 6.1. Рекомендуемая литература 6.1.1. Основная литература Заглавие Библиотека Авторы, составители Издательство, год Л1.1 М.: Учеба, 2005 Петелин Александр Термодинамика и кинетика Электронная библиотека Львович, Михалина металлургических процессов. Екатерина Сергеевна Курс лекций: учеб. пособие для студ. вузов спец. Металлургия чер. металлов

	Авторы, составители	Заглавие	Библиотека	Издательство, год
	Григорян Вули	Физико-химические расчеты	Электронная библиотека	М.: Учеба, 2007
1	Аршакович,	электросталеплавильных	ossekipomias onosmoreka	7 7 166a, 2007
	Стомахин Александр Яковлевич, Уточкин	процессов. Сб. задач с решениями: учебное пособие		
	Юрий Иванович, др.	для студ. вузов спец		
	1 774	Металлургия		
	Котельников Георгий	Термодинамика и кинетика	Библиотека МИСиС	М.: Изд-во МИСиС, 2011
	Иванович, Павлов А. В., Толстолуцкий	металлургических процессов.		
	ы., толстолуцкий Алексей	Физико-химические расчеты распределения компонентов		
	Александрович, др.	между металлом, шлаком и		
	. 1	газом с использованием		
		компьютерной программы		
		"ГИББС - МИСиС": учеб.		
		пособие для студ. вузов, обуч. по напр. 150100 -		
		Металлургия		
		6.1.2. Дополните.	льная литература	-
	Авторы, составители	Заглавие	Библиотека	Издательство, год
	Петелин Александр	Термодинамика и кинетика	Библиотека МИСиС	М.: Учеба, 1998
J	Львович	металлургических процессов:		
		Разд.: Основы физической химии: Курс лекций для студ.		
		спец. 100100		
		6.1.3. Методиче	ские разработки	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
	Котельников Георгий	Термодинамика и кинетика	Библиотека МИСиС	М.: Изд-во МИСиС, 2013
	Иванович, Павлов А.	металлургических процессов.		
	В., Косырев Константин Львович,	Физико-химические расчеты по термодинамике и кинетике		
	др.	поведения газов и		
ľ	1	неметаллических включений		
		в стали: практикум: учеб.		
		пособие для студ. вузов, обуч. по напр Металлургия		
	6.2. Переч	ень ресурсов информационно-	 гелекоммуникапионной сети	
<u>]</u>	Курс "Термодинамика		https://lms.misis.ru/login/ldap	
		цессов" на платформе LMS		
	Canvas			
	n nour t		ммного обеспечения	AINGGI MINGER II
	Лицензии ПО Window PerUsr	s Server CAL ALNG LicSAPk M	VL DVcCAL, HO WinEDUA3	ALNG Subs VL MVL PerUsr и
	ИВТАН ТЕРМО			
П.3	Therm_DZ			
П.4	Microsoft Office			
-	LMS Canvas			
	MS Teams			
		s v6		
11.0				
\Box	Физическая химия			
П.6 П.7 П.8		s v6		

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ						
Ауд.	Назначение	Оснащение					
A-311	Компьютерный класс	комплект учебной мебели на 15 рабочих мест, оснащенных компьютерами с подключением к сети «Интернет»(14 шт) и доступом в электронную информационно-образовательную среду университета, доска, проектор					

Читальный зал №3 (Б)		комплект учебной мебели на 44 места для обучающихся, МФУ Xerox VersaLink B7025 с функцией масштабирования текстов и изображений, 8 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.
Читальный зал №4 (Б)		комплект учебной мебели на 20 рабочих мест, компьютеры с подключением к сети «Интернет» и доступом в электронную информационнообразовательную среду университета
Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.
A-311	Компьютерный класс	комплект учебной мебели на 15 рабочих мест, оснащенных компьютерами с подключением к сети «Интернет»(14 шт) и доступом в электронную информационно-образовательную среду университета, доска, проектор
A-311	Компьютерный класс	комплект учебной мебели на 15 рабочих мест, оснащенных компьютерами с подключением к сети «Интернет»(14 шт) и доступом в электронную информационно-образовательную среду университета, доска, проектор

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

Для успешного освоения дисциплины "Прикладная термодинамика и кинетика металлургических процессов" обучающемуся необходимо:

- 1. Посещать лекционные, лабораторные и практические занятия
- 2. Зарегистрироваться на электронный курс «Прикладная термодинамика и кинетика металлургических процессов»
- 3. При самостоятельной работе активно пользоваться основной и дополнительной литературой, а также рекомендованными электронными ресурсами.
- 4. При возникновении каких-либо вопросов своевременно обращаться к преподавателю (очно/MS Teams)