Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Прорект **Редеральное государственн** ое автономное образовательное учреждение Дата подписания: 31.08.2023 11:06:03 высшего образования

Уникальный профрациональный исследовательский технологический университет «МИСИС»

d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Рост кристаллов

Закреплена за подразделением Кафедра материаловедения полупроводников и диэлектриков

Направление подготовки 22.04.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ

Профиль

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 5 ЗЕТ

Часов по учебному плану 180 Формы контроля в семестрах:

в том числе: экзамен 1

 аудиторные занятия
 34

 самостоятельная работа
 92

 часов на контроль
 54

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1	1.1)	Итого		
Недель	1	8			
Вид занятий	УП	РΠ	УП	РП	
Лекции	17	17	17	17	
Практические	17	17	17	17	
Итого ауд.	34	34	34	34	
Контактная работа	34	34	34	34	
Сам. работа	92	92	92	92	
Часы на контроль	54	54	54	54	
Итого	180	180	180	180	

Программу составил(и):

д.ф.-м.н., проф., Волошин Алексей Эдуардович

Рабочая программа

Рост кристаллов

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - магистратура Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 22.04.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ (приказ от 02.04.2021 г. № 119 о.в.)

Составлена на основании учебного плана:

22.04.01 МАТЕРИАЛОВЕДЕНИЕ ПОЛУПРОВОДНИКОВ И ДИЭЛЕКТРИКОВ, 22.04.01-ММТМ-23-4.plx , утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.06.2023, протокол № 5-23

Утверждена в составе ОПОП ВО:

22.04.01 МАТЕРИАЛОВЕДЕНИЕ ПОЛУПРОВОДНИКОВ И ДИЭЛЕКТРИКОВ, , утвержденной Ученым советом НИТУ МИСИС 22.06.2023, протокол № 5-23

Рабочая программа одобрена на заседании

Кафедра материаловедения полупроводников и диэлектриков

Протокол от г., №

Руководитель подразделения Оганов Артем Ромаевич, д.ф.-м.н., профессор

1. ЦЕЛИ ОСВОЕНИЯ

1.1 формирование знаний и умений в области теории и методов выращивания кристаллических материалов для электроники и фотоники

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
	Блок OП: Б1.B						
2.1	Требования к предварительной подготовке обучающегося:						
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:						
2.2.1	Кристаллы в квантовой	электронике					
2.2.2	Некоторые главы крист	аллохимии					
2.2.3	Оптические явления в н	фисталлах. Часть 1					
2.2.4	Производственная прав	тика по получению профессиональных умений и опыта профессиональной деятельности					
2.2.5	Спектроскопические ме	етоды анализа поверхности					
2.2.6	_	оненты акустоэлектроники					
2.2.7	Материалы и элементы	спинтроники и спинволновой оптики					
2.2.8	Микросхемотехника						
2.2.9		еменной твердотельной электронике					
2.2.10	Нелинейные кристаллы						
2.2.11	Оптические явления в н	фисталлах. Часть 2					
2.2.12	Применение лазерных систем						
2.2.13	Солнечная энергетика						
2.2.14	Подготовка к процедуре защиты и защита выпускной квалификационной работы						
2.2.15	Преддипломная практика для выполнения выпускной квалификационной работы						
2.2.16	Технологии получения	материалов					

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них

Знать:

ПК-1-31 основные принципы, методы и формы контроля технологического процесса и качества продукции

ОПК-1: Способен решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов и знаний в междисциплинарных областях

Знать:

ОПК-1-32 методы выращивания кристаллов

ОПК-1-31 законы, управляющие процессами роста монокристаллов о образования в них дефектов структуры

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них

Уметь:

ПК-1-У1 подбирать технологические параметры процесса выращивания кристаллов

ПК-3: Способен осуществлять и обосновывать рациональный выбор материалов, устройств и технологических процессов для создания функциональных материалов, структур и устройств микро- и наноэлектроники, квантовой фотоники с заданными свойствами и характеристиками

Уметь:

ПК-3-У1 выбирать методы роста кристаллов исходя из диаграммы состояния и заданных требований

ОПК-1: Способен решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов и знаний в междисциплинарных областях

Владеть:

ОПК-1-В1 навыками теоретического анализа процессов роста монокристаллов на основании фундаментальных законов кристаллообразования

		4. CTI	РУКТУР	А И СОДЕРЖА	ние			
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Элементарные процессы роста кристаллов							
1.1	Рентгеновские дифракционные методы исследования структуры кристаллов /Лек/	1	2	ПК-1-31	Л1.3 Л1.6 Л1.7Л2.2 Л2.3		KM1	
1.2	Рентгеновские дифракционные методы исследования структуры кристаллов /Пр/	1	2	ПК-1-31	Л1.3 Л1.6 Л1.7Л2.2 Л2.3		KM1	
1.3	Рентгеновские дифракционные методы исследования структуры кристаллов /Ср/	1	12	ПК-1-31	Л1.3 Л1.6 Л1.7Л2.2 Л2.3		KM1	
1.4	Механизмы и кинетика роста кристаллов /Лек/	1	1	ОПК-1-31 ОПК-1-В1 ПК- 1-У1	Л1.4Л2.6		KM1	
1.5	Механизмы и кинетика роста кристаллов /Пр/	1	1	ОПК-1-31 ОПК-1-В1 ПК- 1-У1	Л1.4Л2.6		KM1	
1.6	Механизмы и кинетика роста кристаллов /Ср/	1	6	ОПК-1-31 ОПК-1-В1 ПК- 1-У1	Л1.4Л2.6		KM1	
1.7	Массоперенос при росте кристаллов /Лек/	1	1	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.4 Л1.8		KM1	
1.8	Массоперенос при росте кристаллов /Пр/	1	1	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.4 Л1.8		KM1	
1.9	Массоперенос при росте кристаллов /Ср/	1	6	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.4 Л1.8		KM1	
1.10	Дефекты структуры кристаллов /Лек/	1	1	ОПК-1-31 ОПК-1-В1 ПК- 1-У1	Л1.1Л2.1		KM1	
1.11	Дефекты структуры кристаллов /Пр/	1	1	ПК-1-31 ОПК- 1-31 ОПК-1- В1 ПК-1-У1	Л1.1Л2.1		KM1	
1.12	Дефекты структуры кристаллов /Ср/	1	5	ПК-1-31 ОПК- 1-31 ОПК-1- В1 ПК-1-У1	Л1.1Л2.1		KM1	
1.13	Механизмы образования дефектов структуры в процессе роста кристаллов /Лек/	1	2	ПК-1-31 ОПК- 1-31 ОПК-1- В1 ПК-1-У1 ПК-3-У1	Л1.4Л2.5 Л2.9		KM1	
1.14	Механизмы образования дефектов структуры в процессе роста кристаллов /Пр/	1	2	ПК-1-31 ОПК- 1-31 ОПК-1- В1 ПК-1-У1 ПК-3-У1	Л1.4Л2.5		KM1	
1.15	Механизмы образования дефектов структуры в процессе роста кристаллов /Ср/	1	12	ПК-1-31 ОПК- 1-31 ОПК-1- В1 ПК-1-У1 ПК-3-У1	Л1.4Л2.5		KM1	
1.16	Особенности кристаллизации в многокомпонентных системах /Лек/	1	2	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.5Л2.8		KM1	

1.17	Особенности кристаллизации в многокомпонентных системах /Пр/	1	2	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.5Л2.8	KM1
1.18	Особенности кристаллизации в многокомпонентных системах /Ср/	1	6	ОПК-1-31 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.5Л2.8	KM1
	Раздел 2. Методы выращивания кристаллов					
2.1	Методы выращивания кристаллов из расплава /Лек/	1	2	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.4 Л2.7	KM2
2.2	Методы выращивания кристаллов из расплава /Пр/	1	2	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.4 Л2.7	KM2
2.3	Методы выращивания кристаллов из расплава /Ср/	1	14	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.4 Л2.7	KM2
2.4	Методы выращивания кристаллов из паровой фазы /Лек/	1	1	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4	KM2
2.5	Методы выращивания кристаллов из паровой фазы /Пр/	1	1	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4	KM2
2.6	Методы выращивания кристаллов из паровой фазы /Ср/	1	6	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4	KM2
2.7	Методы выращивания кристаллов из растворов /Лек/	1	3	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.6	KM2
2.8	Методы выращивания кристаллов из растворов /Пр/	1	3	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.6	KM2
2.9	Методы выращивания кристаллов из растворов /Ср/	1	15	ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1	Л1.2 Л1.4Л2.6	KM2
2.10	Особенности роста кристаллов в условиях микрогравитации /Лек/	1	2	ОПК-1-31 ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1		KM2
2.11	Особенности роста кристаллов в условиях микрогравитации /Пр/	1	2	ОПК-1-31 ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1		KM2
2.12	Особенности роста кристаллов в условиях микрогравитации /Ср/	1	10	ОПК-1-31 ОПК-1-32 ОПК-1-В1 ПК- 1-У1 ПК-3-У1		KM2

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ						
5.	5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки						
Код КМ	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т						
KM1	Контрольная работа	ОПК-1-31;ПК-1- 31;ОПК-1-В1	 Ряд Фурье. Прямое и обратное преобразование Фурье. Рассеяние рентгеновских лучей на электронной плотности и его связь с интегралом Фурье. Рассеяние рентгеновских лучей кристаллом. Атомный рассеивающий фактор. Структурная амплитуда. Интерференционная функция Лауэ. Кинематическая и динамическая теория рассеяния 				

рентгеновских лучей. Дисперсионная поверхность. Положение центров распространения на дисперсионной поверхности в зависимости от геометрии съемки.

- 4. Экстинкционная длина. Ширина кривой дифракционного отражения и интегральная интенсивностью Маятниковое решение. Аномальное прохождения рентгеновских лучей.
- 5. Рассеяние рентгеновских лучей в деформированных кристаллах. Эффективная разориентация решетки. Виды рентгентопографического контраста.
- 6. Фазовые равновесия. Химический потенциал и движущая сила кристаллизации. Пересыщение.
- 7. Фазовое равновесие с учетом поверхности раздела фаз. Гомогенное и гетерогенное зарождение кристаллов. Радиус критического зародыша (трехмерного, двумерного). Работа образования зародыша.
- 8. Поверхностные конфигурации атомов. Структура поверхности кристалла, критерий Джексона. Нормальный и послойный рост кристаллов. Источники ростовых ступеней.
- 9. Кинетика послойного роста кристаллов по механизму двумерного зарождения и дислокационно-спиральному механизму. Простые и сложные дислокационные источники роста. Активность дислокационного источника. Конкуренция вицинальных холмиков.
- 10. Тепловые условия при росте из расплава. Скорость роста из расплава.
- 11. Коэффициент распределения. Законы диффузии. Диффузия в движущемся потоке. Захват примеси кристаллом при диффузионном массопереносе. Эффективный коэффициент распределения в модели Тиллера. Формирование начальной переходной области. Концентрационный профиль примеси в расплаве вблизи фронта кристаллизации.
- 12. Особенности массопереноса при кристаллизации. Основные закономерности конвективного массопереноса. Пограничный гидродинамический слой. Пограничный диффузионный слой. Поверхность равного доступа.
- 13. Конвективно-диффузионный массоперенос. Эффективный коэффициент распределения в модели Бартона-Прима-Слихтера.
- 14. Скорость роста кристалла из раствора в смешанном диффузионно-кинетическом режиме. Диффузионный и кинетический режимы роста кристалла. Морфологическая неустойчивость.
- 15. Точечные дефекты. Собственные и примесные точечные дефекты. Конфигурации точечных дефектов. Центр окраски.
- 16. Равновесное распределение примесей. Захват примесей при послойном росте кристаллов: статистический отбор, диффузионная релаксация. Влияние примесей на кинетику роста кристалла.
- 17. Секториальная неоднородность. Вицинальная секториальность. Зонарная неоднородность при дислокационно-спиральном росте кристаллов.
- 18. Зонарная неоднородность при нормальном механизме роста кристаллов. Эффект грани.
- 19. Концентрационное переохлаждение. Ячеистая структура.
- 20. Дислокации. Вектор Бюргерса и плоскость скольжения дислокации. Механизмы движения дислокаций. Подвижность дислокаций. Барьер Пайерлса. Механизм двойных перегибов.
- 21. Особенности дислокационной структуры при послойном росте кристаллов: источники дислокаций, ориентация дислокаций.
- 22. Двойники и дефекты упаковки. Образование двойников при изменении формы кристаллов.
- 23. Объемные дефекты: включения второй фазы, захват частиц. Кристаллизационное давление, расклинивающее давление.
- 24. Механизмы образования включений при росте кристаллов из растворов.
- 25. Фазовые равновесия в многокомпонентных системах. Равновесия в трехкомпонентной системе. Обменный потенциал. Подавление обменных процессов при переохлаждении.
- 26. Реакция изоморфного замещения. Материальный баланс

УП: 22.04.01-ММТМ-23-4.plx стр. 7

			процесса. 27. Смешанные кристаллы: соотношение компонентов в кристалле и в растворе. Секториальная, зонарная, радиальная и мозаичная неоднородность смешанных кристаллов. 28. Линейное (векторное) пространство. Норма вектора. Скалярное произведение. Линейное нормированное пространство R21. Диаграммы Шрейнемакерса. Описание диаграмм Шрейнемакерса с использованием свойств пространства R21. Свойства диаграмм Шрейнемакерса. Объемный эффект реакции изоморфного замещения.
KM2	Контрольная работа	полняемых по дисципл	1. Рентгеноструктурный анализ (РСА). Основные стадии РСА. Дифрактометрия поликристаллов. 2. Метод двухкристального спектрометра. Эффект псевдомонохроматизации. Дисперсия схемы спектрометра. Причины уширения кривой дифракционного отражения. Подготовка и описание эксперимента. 3. Метод стоячих рентгеновских волн. 4. Методы рентгеновской топографии. Рентгенотопографический контраст в зависимости от поглощения кристалла. 5. Геометрический отбор. Получение и приготовление затравок для выращивания кристаллов из расплава и раствора. 6. Угол роста. Влияние мениска на форму роста кристалла. 7. Метод Чохральского. 8. Метод Степанова. 9. Метод Киропулоса. 10. Метод Вернейля. 11. Зонная плавка. Зонная очистка и зонное выравнивание. 12. Метод Стокбаргера — Бриджмена. Метод Багдасарова. 13. Метод Обреимова-Шубникова. 14. Метод Обреимова-Шубникова. 14. Метод объемной паровой фазы. 15. Технология неорганических фторидов. 16. Методы выращивания кристаллов из водных растворов. 17. Гидротермальный метод выращивания кристаллов. 18. Рост из раствора в расплаве. 19. Скоростной рост кристаллов из раствора. Влияние растворимости на скорость роста. Стабильное и метастабильное состояния раствора, «Мертвая» зона. Подготовка раствора для скоростного роста. Приготовление и регенерация затравки. 20. Принципы выращивания смещанных кристаллов на примере К2(Ni,Co)(SO4)2· 6H2O. 21. Рост неорганических кристаллов в условиях микрогравитации. Виды конвекции. Бесконтактный рост. 22. Особенности кристаллизации белков. Эффект «самоочистки» раствора. Кристаллизации белков в космосе.

5.2. Перечень работ, выполняемых по дисциплине (модулю, практике, НИР) - эссе, рефераты, практические и расчетно-графические работы, курсовые работы, проекты и др.

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Билет 1

1. Рассеяние рентгеновских лучей кристаллом. Атомный рассеивающий фактор. Структурная амплитуда. Интерференционная функция Лауэ.

2. Метод объемной паровой фазы.

Билет 2

1. Кинематическая и динамическая теория рассеяния рентгеновских лучей. Дисперсионная поверхность. Положение центров распространения на дисперсионной поверхности в зависимости от геометрии съемки.

2. Геометрический отбор. Получение и приготовление затравок для выращивания кристаллов из расплава и раствора.

Билет 3

1. Маятнико 2.	Экстинкционная длина. Ширина кривой дифракционного отражения и интегральная ин овое решение. Аномальное прохождения рентгеновских лучей. Зонарная неоднородность при нормальном механизме роста кристаллов. Эффект грани	
Билет 4		
1. рентгенто 2.	Рассеяние рентгеновских лучей в деформированных кристаллах. Эффективная разориен опографического контраста. Угол роста. Влияние мениска на форму роста кристалла.	нтация решетки. Виды
Билет 5		
	Рентгеноструктурный анализ (РСА). Основные стадии РСА. Дифрактометрия поликрис Коэффициент распределения. Законы диффузии. Диффузия в движущемся потоке. Захвузионном массопереносе. Эффективный коэффициент распределения в модели Тиллера. Фй переходной области. Концентрационный профиль примеси в расплаве вблизи фронта кра	ват примеси кристаллом Рормирование
Билет 6		
2.	Метод двухкристального спектрометра. Эффект псевдомонохроматизации. Дисперсия с уширения кривой дифракционного отражения. Подготовка эксперимента. Особенности массопереноса при кристаллизации. Основные закономерности конвективный гидродинамический слой. Пограничный диффузионный слой. Поверхность равного д	ного массопереноса.
Билет 7		
1. 2.	Методы рентгеновской топографии. Рентгенотопографический контраст в зависимости Фазовые равновесия. Химический потенциал и движущая сила кристаллизации. Пересь	
Билет 8		
1. Радиус кр 2.	Фазовое равновесие с учетом поверхности раздела фаз. Гомогенное и гетерогенное заритического зародыша (трехмерного, двумерного). Работа образования зародыша. Метод Чохральского.	ождение кристаллов.
Билет 9		
1. потенциа. 2.	Фазовые равновесия в многокомпонентных системах. Равновесия в трехкомпонентной п. Подавление обменных процессов при переохлаждении. Метод Киропулоса.	системе. Обменный
Билет 10		
1. 2.	Реакция изоморфного замещения. Материальный баланс процесса. Метод Стокбаргера — Бриджмена. Метод Багдасарова.	
Билет 11		
1. радиальна 2.	Смешанные кристаллы: соотношение компонентов в кристалле и в растворе. Секториал и мозаичная неоднородность смешанных кристаллов. Зонная плавка. Зонная очистка и зонное выравнивание.	пьная, зонарная,

J 11. 22.0 1.0	or militia 20 mpm	
Билет 12		
	Линейное (векторное) пространство. Норма вектора. Скалярное произведение. Линейное н иство R21. Диаграммы Шрейнемакерса. Описание диаграмм Шрейнемакерса с использованием ванного пространства R21. Свойства диаграмм Шрейнемакерса. Объемный эффект реакции из ия. Метод Степанова.	свойств линейного
Билет 13 1. послойны	Поверхностные конфигурации атомов. Структура поверхности кристалла, критерий Джекс ый рост кристаллов. Источники ростовых ступеней.	она. Нормальный и
2.	Метод Вернейля.	
Билет 14		
	Кинетика послойного роста кристаллов по механизму двумерного зарождения и дислокаци иу. Простые и сложные дислокационные источники роста. Активность дислокационного источьных холмиков. Метод Обреимова-Шубникова. Модифицированный метод Обреимова-Шубникова.	
Билет 15		
1. 2.	Тепловые условия при росте из расплава. Скорость роста из расплава. Особенности кристаллизации белков. Эффект «самоочистки» раствора. Кристаллизация бе	лков в космосе.
Билет 16		
1. -Слихтера	Конвективно-диффузионный массоперенос. Эффективный коэффициент распределения в м	одели Бартона-Прима
2. давление.	Объемные дефекты: включения второй фазы, захват частиц. Кристаллизационное давление	е, расклинивающее
Билет 17		
2.	Скорость роста кристалла из раствора в смешанном диффузионно-кинетическом режиме. , ский режимы роста кристалла. Морфологическая неустойчивость. Дислокации. Вектор Бюргерса и плоскость скольжения дислокации. Механизмы движения дость дислокаций. Барьер Пайерлса. Механизм двойных перегибов.	
Билет 18		
1. дислокаці 2.	Особенности дислокационной структуры при послойном росте кристаллов: источники дисций. Рост неорганических кристаллов в условиях микрогравитации. Виды конвекции. Бесконта	•
Билет 19		

1. Равновесное распределение примесей. Захват примесей при послойном росте кристаллов: статистический отбор, диффузионная релаксация. Влияние примесей на кинетику роста кристалла.
2. Рост из раствора в расплаве.

Билет 20

1. Секториальная неоднородность. Вицинальная секториальность. Зонарная неоднородность при дислокационноспиральном росте кристаллов.

2. Гидротермальный метод выращивания кристаллов.

Билет 21

- 1. Механизмы образования включений при росте кристаллов из растворов.
- 2. Методы выращивания кристаллов из водных растворов.

Билет 22

- 1. Концентрационное переохлаждение. Ячеистая структура.
- 2. Скоростной рост кристаллов из раствора. Влияние растворимости на скорость роста. Стабильное и метастабильное состояния раствора. «Мертвая» зона. Подготовка раствора для скоростного роста. Приготовление и регенерация затравки.

Билет 23

- 1. Двойники и дефекты упаковки. Образование двойников при изменении формы кристаллов.
- 2. Принципы выращивания смешанных кристаллов на примере K2(Ni,Co)(SO4)2· 6H2O.

Билет 24

- 1. Ряд Фурье. Прямое и обратное преобразование Фурье. Рассеяние рентгеновских лучей на электронной плотности и его связь с интегралом Фурье.
- 2. Точечные дефекты. Собственные и примесные точечные дефекты. Конфигурации точечных дефектов. Центр окраски.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Оценка «отлично» выставляется обучающемуся, если он глубоко и полностью усвоил материал; исчерпывающе, последовательно, четко и логически стройно его излагает; умеет тесно увязывать теорию с практикой; свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий; использует в ответе материал из различных литературных источников; правильно обосновывает принятое решение; владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется обучающемуся, если он твердо знает материал; грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос; правильно применяет теоретические положения при решении практических вопросов и задач; владеет необходимыми навыками и приемами их выполнения, а также имеет достаточно полное представление о значимости знаний по дисциплине.

Оценка «удовлетворительно» выставляется обучающемуся, если он имеет знания только основного материала, но не усвоил его деталей; допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала; испытывает сложности при выполнении практических работ и затрудняется связать теорию вопроса с практикой.

Оценка «неудовлетворительно» выставляется обучающемуся, который не знает значительной части материала; неуверенно отвечает; допускает серьезные ошибки; не имеет представлений по методике выполнения практической работы. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение без дополнительных занятий по данной дисциплине.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ 6.1. Рекомендуемая литература 6.1.1. Основная литература Авторы, составители Заглавие Библиотека Издательство, год Л1.1 Новиков И. И. Дефекты кристаллического строения металлов: Учеб. пособие для студентов вузов Библиотека МИСиС М.: Металлургия, 1983

	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л1.2	Горелик С. С., Дашевский М. Я.	Материаловедение полупроводников и диэлектриков: учебник для студ. вузов по напр. 'Материаловедение и технология новых материалов', 'Материаловедение, технологии материалов и покрытий'	Электронная библиотека	М.: Изд-во МИСиС, 2003
Л1.3	Бублик В. Т., Дубровина А. Н.	Методы исследования структуры полупроводников и металлов: учеб. пособие для вузов по спец Технология спец. материалов электрон. техники	Библиотека МИСиС	М.: Металлургия, 1978
Л1.4	Козлова О. Г., Белов Н. В.	Рост кристаллов: учеб. пособие для геолог. и химико -технол. спец. вузов	Библиотека МИСиС	М.: Изд-во МГУ, 1967
Л1.5	Иванова А. В., Лисовская Т. Д., Горелик С. С.	Материаловедение полупроводников и диэлектриков. Разд.:Фазовые равновесия в тройных полупроводниковых системах: учеб. пособие для практ. занятий для студ. спец. 0643,0604	Библиотека МИСиС	М.: Учеба, 1983
Л1.6	Бублик В. Т., Горелик С. С.	Основы динамической теории интерференции рентгеновских лучей	Библиотека МИСиС	М.: Учеба, 1971
Л1.7	Бублик В. Т., Дубровина А. Н., Зимичева Г. М.	Методы исследования структуры.Применение методов рентгеноструктурного анализа (исследование структуры кристаллов материалов электронной техники): лаб. практикум для студ. спец. 0604,0629,0643 (часть 2)	Электронная библиотека	М.: Учеба, 1985
Л1.8	Горелик С. С., Дашевский М. Я.	Материаловедение полупроводников и диэлектриков: учебник для студ. вузов по напр. 'Материаловедение и технология новых материалов', 'Материаловедение, технологии материалов и покрытий'	Библиотека МИСиС	М.: Изд-во МИСиС, 2003
		6.1.2. Дополнител	тьная литература	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л2.1	Келли А., Гровс Г., Шаскольский М. П.	Кристаллография и дефекты в кристаллах	Электронная библиотека	Москва: Мир, 1974
Л2.2	Каули Д., Пинскер 3. Г.	Физика дифракции	Электронная библиотека	Москва: Мир, 1979
Л2.3	Пинскер 3. Г.	Динамическое рассеяние рентгеновских лучей в идеальных кристаллах	Электронная библиотека	Москва: Наука, 1974

	Авторы, составители	Заглавие	Библиотека	Издательство, год		
Л2.4	Лисовская Т. Д., Горелик С. С.	Материаловедение полупроводников и металловедение: Разд.: Основные закономерности влияния различных технологических способов получения и воздействия на фазовый состав, структуру, свойства. Ч. 4: лаб. практикум для студ. спец. 0604, 0629, 0643	Библиотека МИСиС	М.: Учеба, 1986		
Л2.5	Галаев А. А., Горелик С. С., Дашевский М. Я., др.	Материаловедение полупроводников и диэлектриков: Разд.: Структурные несовершенства в кристаллах: для практ. занятий студ. спец. 20.02, 20.08	Библиотека МИСиС	М.: Учеба, 1990		
Л2.6	Портнов О. Г.	Технология объемных монокристаллов полупроводников и диэлектриков. Выращивание технологичных монокристаллов иодата лития для устройств нелинейной оптики: учеб. пособие	Библиотека МИСиС	М.: [МИСиС], 2015		
Л2.7	Дашевский М. Я., Горелик С. С.	Выращивание из расплавов кристаллов полупроводников с заданными свойствами Часть 1: Курс лекций	Электронная библиотека	М.: Учеба, 1971		
Л2.8	Горелик С. С.	Разд.: Фазовые равновесия, химические связи и свойства полупроводниковых материалов: Лаб. практикум	Библиотека МИСиС	М.: [МИСиС], 1980		
Л2.9	Горелик С. С.	Влияние состава, структуры и структурных дефектов на свойства полупроводников: Шифр темы 334001 ГР N81056032	Библиотека МИСиС	М.: [МИСиС], 1983		
	T		ммного обеспечения			
П.1	ESET NOD32 Antiviru	dS				
П.2	Microsoft Office					
П.3	MATLAB					
П.4	CorelDRAW Graphics	Suite X4				
П.5	Microsoft Excel					
П.6	Microsoft PowerPoint					
П.7	PhotoShop					
П.8	Acrobat Reader DC					
П.9	Origin 2022					
	6.4. Перечен	ь информационных справочні	ых систем и профессиональн	ных баз данных		

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ