Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное** государственное автономное образовательное учреждение Дата подписания: 15.05.2023 10:02:52 высшего образования

Уникальный про**фрациональный исследовательский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Методы исследования характеристик и свойств материалов

Закреплена за подразделением Кафедра функциональных наносистем и высокотемпературных материалов

Направление подготовки 28.04.03 НАНОМАТЕРИАЛЫ

Профиль Композиционные наноматериалы

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 4 ЗЕТ

Часов по учебному плану 144 Формы контроля в семестрах:

в том числе: экзамен 3

 аудиторные занятия
 34

 самостоятельная работа
 74

 часов на контроль
 36

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	3 (2.1)		Итого		
Недель	1	9			
Вид занятий	УП	РΠ	УП	РΠ	
Лекции	17	17	17	17	
Лабораторные	17	17	17	17	
Итого ауд.	34	34	34	34	
Контактная работа	34	34	34	34	
Сам. работа	74 65		74	65	
Часы на контроль	36 36		36	36	
Итого	144	135	144	135	

Программу составил(и):

дтн, Доцент, Конюхов Юрий Владимирович

Рабочая программа

Методы исследования характеристик и свойств материалов

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - магистратура Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 28.04.03 НАНОМАТЕРИАЛЫ (приказ от 05.03.2020 г. № 95 о.в.)

Составлена на основании учебного плана:

28.04.03 Наноматериалы, 28.04.03-МНМ-22-1.plx Композиционные наноматериалы, утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.09.2022, протокол № 8-22

Утверждена в составе ОПОП ВО:

28.04.03 Наноматериалы, Композиционные наноматериалы, утвержденной Ученым советом НИТУ МИСИС 22.09.2022, протокол № 8-22

Рабочая программа одобрена на заседании

Кафедра функциональных наносистем и высокотемпературных материалов

Протокол от 17.06.2020 г., №20

Руководитель подразделения Кузнецов Денис Валерьевич

УП: 28.04.03-МНМ-22-1.plx cтр.

	1. ЦЕЛИ ОСВОЕНИЯ					
1.1	Цель – сформировать теоретические и практические навыки применения методов и средств контроля параметров технологических процессов, испытаний и диагностики, исследования и контроля качества материалов, оценки и прогнозирования их эксплуатационных характеристик.					
1.2	Задачи:					
1.3	научить					
1.4	1. экспериментальным методам исследования современных конструкционных и нанодисперсных материалов в широком диапазоне температур; давлений составов газовой фазы, скоростей изменения параметров;					
1.5	2. использованию современного оборудования и приборов при проведении исследовательских работ;					
1.6	3. анализу источников погрешностей, применению ПК в физико-химических исследованиях и разработке новых материалов.					

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ							
	Блок OП: Б1.O							
2.1	Требования к предва	ительной подготовке обучающегося:						
2.1.1	Иностранный язык							
2.1.2	Методология и практи	ка определения размерных характеристик наноматериалов						
2.1.3	Методы исследования	материалов						
2.1.4	Научно-исследователь	ская практика						
2.1.5	Специальный физичест	кий практикум						
2.1.6	Технологии получения материалов							
2.1.7	Физика магнитных явлений							
2.1.8	Философские вопросы естествознания							
2.1.9	* *	тические системы в материаловедении						
2.1.10	Современные проблем	ы нанотехнологий						
2.1.11	Физика поверхностей раздела в твердых телах							
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:							
2.2.1	Подготовка к процедуре защиты и защита выпускной квалификационной работы							
2.2.2	Преддипломная практи							

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

УК-4: Способен эффективно функционировать в национальном и международном коллективах в качестве члена или лидера команды, применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

Знать:

УК-4-31 Основные литературные базы данных

ОПК-4: Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач

Знать:

ОПК-4-31 Основы планирования экспериментов

ОПК-3: Способен управлять жизненным циклом создания инженерных продуктов в области нанотехнологий и наноматериалов с учетом экономических, экологических, социальных и других ограничений

Знать:

ОПК-3-31 Стадии жизненного цикла продукции

ОПК-2: Способен управлять профессиональной и иной деятельностью на основе применения знаний проектного и финансового менеджмента, применять знание экономических, организационных и управленческих вопросов, таких как: управление проектами, рисками и изменениями

Знать

ОПК-2-31 Основы снабжения лаборатории

ОПК-1: Способен ставить и решать инженерные и научно-технические задачи в области получения и исследования наноматериалов и новых междисциплинарных направлений с использованием естественнонаучных и математических моделей, применять в профессиональной деятельности знания фундаментальных наук, знания в междисциплинарных областях

Знать:

ОПК-1-31 Естественнонаучные и математические модели

УК-3: Способен использовать различные методы ясного и недвусмысленного формулирования своих выводов, знаний и обоснований для специализированной и неспециализированной аудиторий в национальном и международном контекстах, организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели

Знать:

УК-3-31 Основные этапы проектирования продукции

ОПК-7: Способен разрабатывать и актуализировать научно-техническую документацию в области получения наноматериалов

Знать:

ОПК-7-31 Основы стандартизации и сертификации

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Знать:

УК-1-31 Физико-химические и физические основы методов исследования свойств и характеристик материалов

УК-2: Способен интегрировать знания и принимать решения в сложных ситуациях, формулировать суждения на основе неполной или ограниченной информации, управлять проектом на всех этапах его жизненного цикла

Знаты

УК-2-31 Классификацию и основы методов анализа процессов и материалов

ОПК-7: Способен разрабатывать и актуализировать научно-техническую документацию в области получения наноматериалов

Уметь:

ОПК-7-У1 Оформлять отчеты по результатам экспериментов

ОПК-4: Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных залач

Уметь:

ОПК-4-У1 Ставить эксперимент и интерпретировать полученные данные

ОПК-3: Способен управлять жизненным циклом создания инженерных продуктов в области нанотехнологий и наноматериалов с учетом экономических, экологических, социальных и других ограничений

Уметь:

ОПК-3-У1 Управлять жизненным циклом создания продуктов в области нанотехнологий и материалов с учетом экологических и других ограничений

ОПК-2: Способен управлять профессиональной и иной деятельностью на основе применения знаний проектного и финансового менеджмента, применять знание экономических, организационных и управленческих вопросов, таких как: управление проектами, рисками и изменениями

Уметь

ОПК-2-У1 Планировать и оформлять заявки на расходные материалы

УК-3: Способен использовать различные методы ясного и недвусмысленного формулирования своих выводов, знаний и обоснований для специализированной и неспециализированной аудиторий в национальном и международном контекстах, организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели

Уметь:

УК-3-У1 Применять передовые методы и технологии проектирования или использовать творческий подход для разработки новых и оригинальных методов проектирования и разработки

УП: 28.04.03-МНМ-22-1.plx стр.

УК-2: Способен интегрировать знания и принимать решения в сложных ситуациях, формулировать суждения на основе неполной или ограниченной информации, управлять проектом на всех этапах его жизненного цикла

Уметь:

УК-2-У1 Применять вычислительные и экспериментальные методы в научной деятельности

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Уметь:

УК-1-У1 Демонстрировать глубокое знание и понимание фундаментальных наук, а также знания в междисциплинарных областях профессиональной деятельности

УК-4: Способен эффективно функционировать в национальном и международном коллективах в качестве члена или лидера команды, применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

Уметь:

УК-4-У1 Пользоваться литературными данными и находить информацию по применению новейших технологий

ОПК-1: Способен ставить и решать инженерные и научно-технические задачи в области получения и исследования наноматериалов и новых междисциплинарных направлений с использованием естественнонаучных и математических моделей, применять в профессиональной деятельности знания фундаментальных наук, знания в междисциплинарных областях

Уметь:

ОПК-1-У1 Применять естественнонаучные и математические модели при решении инженерных и научно-технических залач

ОПК-7: Способен разрабатывать и актуализировать научно-техническую документацию в области получения наноматериалов

Владеть:

ОПК-7-В1 Методикой оформления технической документации в области наноматериалов

ОПК-4: Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач

Влалеть:

ОПК-4-В1 Ставить эксперимент и интерпретировать полученные данные

УК-2: Способен интегрировать знания и принимать решения в сложных ситуациях, формулировать суждения на основе неполной или ограниченной информации, управлять проектом на всех этапах его жизненного цикла

Владеть:

УК-2-В1 Методами критического анализа проблемных ситуаций на основе системного подхода, вырабатывать стратегию лействий

УК-4: Способен эффективно функционировать в национальном и международном коллективах в качестве члена или лидера команды, применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

Владеть

УК-4-В1 Методами сбора, критического анализа и обобщения информации по теме исследований

ОПК-1: Способен ставить и решать инженерные и научно-технические задачи в области получения и исследования наноматериалов и новых междисциплинарных направлений с использованием естественнонаучных и математических моделей, применять в профессиональной деятельности знания фундаментальных наук, знания в междисциплинарных областях

Владеть:

ОПК-1-В1 Владеть методами постановки и решения инженерных и научно-технических задач в области получения и исследования наноматериалов

ОПК-3: Способен управлять жизненным циклом создания инженерных продуктов в области нанотехнологий и наноматериалов с учетом экономических, экологических, социальных и других ограничений

Владеть:

ОПК-3-В1 Методикой управления жизненным циклом создания продукции на основании результатов комплексных исследований

УП: 28.04.03-МНМ-22-1.plx стр. 6

УК-3: Способен использовать различные методы ясного и недвусмысленного формулирования своих выводов, знаний и обоснований для специализированной и неспециализированной аудиторий в национальном и международном контекстах, организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели

Владеть:

УК-3-В1 Методами работы в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

4. СТРУКТУРА И СОДЕРЖАНИЕ								
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Термические методы анализа							
1.1	Основы метрологии и стандартизации. Метрологическая аттестация средств измерений. Общая классификация методов физико-химических исследований. /Лек/	3	2	ОПК-3-31 ОПК-4-31 ОПК-7-31	Л1.1 Л1.2Л2.1 Л2.2			
1.2	Теоретические основы термогравиметрии, дифференциальной сканирующей калориметрии, дифференциального термического анализа, дилатометрии. Методы неизотермической кинетики. /Лек/	3	2	ОПК-3-31 ОПК-4-31 ОПК-7-31	Л1.1 Л1.2Л2.1 Л2.2			
1.3	Классификация методов определение теплоемкости, теплопроводности и температуропроводности. Стационарные и нестационарные методы определения теплопроводности. /Лек/	3	2	ОПК-3-31 ОПК-4-31 ОПК-7-31	Л1.1 Л1.2Л2.1 Л2.2			
1.4	Термический анализ твердофазных превращений в режиме линейного нагрева /Лаб/	3	3	ОПК-3-У1 ОПК-3-В1 ОПК-4-У1 ОПК-4-В1 ОПК-7-У1 ОПК-7-В1	Л1.3 Л1.4Л2.1 Л2.2			
1.5	Термомеханический анализ материалов /Лаб/	3	2	ОПК-3-У1 ОПК-3-В1 ОПК-4-У1 ОПК-4-В1 ОПК-7-У1 ОПК-7-В1	Л1.3 Л1.4Л2.1 Л2.2			
1.6	Определение теплопроводности твердых тел методом вспышки /Лаб/	3	2	ОПК-3-У1 ОПК-3-В1 ОПК-4-У1 ОПК-4-В1 ОПК-7-У1 ОПК-7-В1	Л1.3 Л1.4Л2.1 Л2.2			

1.7	Проработка материалов лекций, подготовка к защите лабораторных работ. /Ср/ Раздел 2. Методы исследования поверхности	3	20	ОПК-3-31 ОПК-3-У1 ОПК-3-В1 ОПК-4-31 ОПК-4-У1 ОПК-4-В1 ОПК-7-31 ОПК-7-У1	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2		
2.1	Классификация методов исследования поверхности. Теоретические основы и области применения методов: дифракция медленных электронов (ДМЭ), дифракция (отраженных) быстрых электронов (ДОБЭ), рентгеновская фотоэлектронная спектроскопия (РФЭС), развитая тонкая структура края поглощения рентгеновских лучей поверхностью (SEXAFS), электронная ожеспектроскопия (ЭОС). /Лек/	3	2	УК-4-31 ОПК- 1-31 ОПК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
2.2	Теоретические основы и области применения методов: спектроскопия потенциала появления (СПП), спектроскопия ионизационных потерь (СИП), ультрафиолетовая фотоэлектронная спектроскопия (УФЭС), ионно-нейтральная спектроскопия (ИНС), спектроскопия рассеянных медленных электронов (СРМИ). /Лек/	3	2	УК-4-31 ОПК- 1-31 ОПК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
2.3	Теоретические основы и области применения методов: спектроскопия рассеянных быстрых электронов (СРБИ), вторично-ионная массспектроскопия (ВИМС), температурно-программируемая десорбция (ТПД), электронно- и фотонностимулированная десорбция (ЭСД и ФСД), полевая эмиссионная микроскопия (ПЭМ). /Лек/	3	2	УК-4-31 ОПК- 1-31 ОПК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
2.4	Исследование качественного и количественного состава образца при помощи рентгенофлуоресцентного анализа /Лаб/	3	2	УК-4-У1 УК-4 -В1 ОПК-1-У1 ОПК-1-В1 ОПК-2-У1	Л1.3 Л1.4Л2.1 Л2.2		

2.5	Определение элементного состава образца и его стехиометрии методом энергодисперсионной рентгеновской спектроскопии /Лаб/	3	2	УК-4-У1 УК-4 -В1 ОПК-1-У1 ОПК-1-В1 ОПК-2-У1	Л1.3 Л1.4Л2.1 Л2.2		
2.6	Определение типов связей методом спектроскопии комбинационного рассеяния DXR /Лаб/	3	2	УК-4-У1 УК-4 -В1 ОПК-1-У1 ОПК-1-В1 ОПК-2-У1	Л1.3 Л1.4Л2.1 Л2.2		
2.7	Проработка материалов лекций, подготовка к защите лабораторных работ, написание реферата. /Ср/	3	20	УК-4-31 УК-4- У1 УК-4-В1 ОПК-1-31 ОПК-1-У1 ОПК-1-В1 ОПК-2-31 ОПК-2-У1	Л1.1 Л1.2 Л1.3 Л1.4Л2.1 Л2.2		
	Раздел 3. Электрохимические методы анализа						
3.1	Общая характеристика и классификация электрохимических методов анализа. Конструкционные особенности и принцип работы электрохимических ячеек. Классификация электрохимических цепей и электрохимические методы. Неравновесные методы электрохимического анализа. /Лек/	3	2	УК-1-31 УК-3- 31 УК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
3.2	Электролиз. Методы с нарушением равновесия. Теоретические основы потенциометрии, вольтамперометрии, кулонометрии и электрогравиметрии. /Лек/	3	1	УК-1-31 УК-3- 31 УК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
3.3	Теоретические основы кондуктометрии, высокочастотного титрования, хроноамперометрии и полярографии. Определение электросопротивления и электропроводности твердых материалов. /Лек/	3	2	УК-1-31 УК-3- 31 УК-2-31	Л1.1 Л1.2Л2.1 Л2.2		
3.4	Определение типа, концентрации и подвижности основных носителей заряда по измерениям эффекта Холла /Лаб/	3	2	УК-1-У1 УК-3 -У1 УК-3-В1 УК-2-У1 УК-2 -В1	Л1.3 Л1.4Л2.1 Л2.2		
3.5	Определение стабильности и дзета потенциалов коллоидных систем /Лаб/	3	2	УК-1-У1 УК-3 -У1 УК-3-В1 УК-2-У1 УК-2 -В1	Л1.3 Л1.4Л2.1 Л2.2		

3.6	Проработка материалов	3	25	УК-1-31 УК-1-	Л1.1 Л1.2		
	лекций, подготовка к			У1 УК-3-31	Л1.3		
	защите лабораторных работ,			УК-3-У1 УК-3	Л1.4Л2.1		
	разработка лабораторной			-В1 УК-2-31	Л2.2		
	работы. /Ср/			УК-2-У1 УК-2			
				-B1			

5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ

5.1. Вопросы для самостоятельной подготовки к экзамену (зачёту с оценкой) Основы стандартизации и сертификации (ОПК-7-31) Основы планирования экспериментов (ОПК-4-31) Стадии жизненного цикла продукции (ОПК-3-31) Основы снабжения лаборатории (ОПК-2-31) Модели неизотермической кинетики ОПК-1-31 Достоверные источники научных данных (УК-4-31) Основные этапы проектирования продукции (УК-3-31) Классификация методов анализа процессов и материалов (УК-2-31) Теоретические основы термогравиметрии. (УК-1-31) Теоретические основы дифференциальной сканирующей калориметрии. (УК-1-31) Теоретические основы дифференциального термического анализа. (УК-1-31) Теоретические основы метода дилатометрии. (УК-1-31) Системы анализа выделившегося газа ЕГА. (УК-1-31) Методы определения теплоемкости Ср. (УК-1-31) Стационарные методы определения теплопроводности. (УК-1-31) Нестационарные методы определения теплопроводности. (УК-1-31) Дифракция медленных электронов (ДМЭ). (УК-1-31) Дифракция (отраженных) быстрых электронов (ДОБЭ). (УК-1-31) Рентгеновская фотоэлектронная спектроскопия (РФЭС). (УК-1-31) Развитая тонкая структура края поглощения рентгеновских лучей поверхностью (SEXAFS). (УК-1-31) Электронная оже-спектроскопия (ЭОС). (УК-1-31) Спектроскопия потенциала появления (СПП). (УК-1-31) Спектроскопия ионизационных потерь (СИП). (УК-1-31) Ультрафиолетовая фотоэлектронная спектроскопия (УФЭС). (УК-1-31) Ионно-нейтральная спектроскопия (ИНС). (УК-1-31) Спектроскопия рассеянных медленных электронов (СРМИ). (УК-1-31) Спектроскопия рассеянных быстрых электронов (СРБИ). (УК-1-31) Вторично-ионная масс-спектроскопия (ВИМС). (УК-1-31) Температурно-программируемая десорбция (ТПД). (УК-1-31) Электронно- и фотонно-стимулированная десорбция (ЭСД и ФСД). (УК-1-31) Полевая эмиссионная микроскопия (ПЭМ). (УК-1-31) Электролиз. Методы с нарушением равновесия. (УК-1-31) Теоретические основы потенциометрии. (УК-1-31) Теоретические основы вольтамперометрии. (УК-1-31) Теоретические основы кулонометрии. (УК-1-31) Теоретические основы электрогравиметрии. (УК-1-31) Теоретические основы кондуктометрии. (УК-1-31) Теоретические основы высокочастотного титрования. (УК-1-31) Теоретические основы хроноамперометрии. (УК-1-31) Теоретические основы полярографии. (УК-1-31) Структура отчетов по результатам экспериментов (ОПК-7-У1) Основы постановки эксперимента и интерпретации полученных данных (ОПК-4-У1) Учет экологических и других ограничений при управлении жизненным циклом создания продуктов в области нанотехнологий и материалов с (ОПК-3-У1)

Порядок оформления заявок на расходные материалы для лаборатории (ОПК-2-У1)

Отличия методов неизотермической кинетики от изотермической (ОПК-1-У1)

Основы поиска справочных данных физических величин (УК-4-У1)

Выберите и обоснуйте метод определения химического состава поверхности нанопрошков железа (УК-3-У1)

Особенности интерфейса пользователя термогравиметрической установки SDT Q600 (УК-2-У1)

Объясните физические явления, которые происходят при измерении удельной поверхности методом низкотемпературной адсорбции азота (УК-1-У1)

Какие параметры исследовательского оборудования указывают при оформлении методики эксперимента? (ОПК-7-В1)

Какие требования предъявляются к чистоте применяемых в исследованиях инертных газов? (ОПК-4-В1)

Методика управления жизненным циклом создания продукции на основании результатов комплексных исследований ОПК-3-B1

Особенности и ограничения при подготовке наноразмерных образцов для исследований (ОПК-1-В1)

Какой метод следует выбрать для определения дисперсности нанопорошков? (УК-4-В1)

Опишите принципы выбора метода исследований (УК-3-В1)

Основы работы в команде при выполнении научных проектов (УК-2-В1)

5.2. Перечень работ, выполняемых по дисциплине (модулю, практике, НИР) - эссе, рефераты, практические и расчетно-графические работы, курсовые работы, проекты и др.

Реферат 1 (ОПК-7-У1, ОПК-4-У1, ОПК-3-У1, ОПК-7-В1, ОПК-4-В1, ОПК-3-В1) Перечень тем рефератов представлен в Приложении.

Реферат 2 (ОПК-2-У1, ОПК-1-У1, УК-4-У1, ОПК-1-В1, УК-4-В1) Перечень тем рефератов представлен в Приложении.

Реферат 3 (УК-3-У1, УК-2-У1, УК-1-У1, УК-3-В1, УК-2-В1) Перечень тем рефератов представлен в Приложении.

TI: 28.04.03-MHM-22-1.plx ctp. 11

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Экзаменационный билет состоит из трех теоретических вопросов. Каждый вопрос охватывает соответствующий раздел курса и перекрывает соответствующие компетенции. Комплект экзаменационных билетов хранится на кафедре. Пример типового экзаменационного билета представлен в Приложении.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Оценка «отлично» - обучающийся показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно действует по применению полученных знаний на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литературу.

Оценка «хорошо» - обучающийся показывает твердые и достаточно полные знания в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, правильно действует по применению знаний на практике, четко излагает материал.

Оценка «удовлетворительно» - обучающийся показывает знания в объеме пройденной программы, ответы излагает хотя и с ошибками, но уверенно исправляемыми после дополнительных и наводящих вопросов, правильно действует по применению знаний на практике;

Оценка «неудовлетворительно» - обучающийся допускает грубые ошибки в ответе, не понимает сущности излагаемого вопроса, не умеет применять знания на практике, дает неполные ответы на дополнительные и наводящие вопросы. Оценка «не явка» – обучающийся на экзамен не явился.

	6. УЧЕ	БНО-МЕТОДИЧЕСКОЕ И ИН 6.1. Рекоментуе	[ФОРМАЦИОННОЕ ОБЕС] мая литература	ПЕЧЕНИЕ
		<u>·</u>	ая литература	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л1.1	Абрамов Н. Н., Белов В. А., Гершман Е. И., др., Калошкин С. Д.	Современные методы исследований функциональных материалов: лаб. практикум: учеб. пособие для студ. вузов, обуч. по напр. 'Металлургия'	Электронная библиотека	М.: Изд-во МИСиС, 2011
Л1.2	Арсентьев П. П., Яковлев В. В., Крашенинников М. Г., др.	Физико-химические методы исследования металлургических процессов: Учебник для студ. металлург. спец. вузов	Библиотека МИСиС	М.: Металлургия, 1988
Л1.3	Левина В. В., Конюхов Ю. В., Филонов М. Р., др.	Физико-химия наноструктурных материалов: лаб. практикум: учеб. пособие для студ. вузов, обуч. по напр. 150700 - Физическое материаловедение	Электронная библиотека	М.: Изд-во МИСиС, 2010
Л1.4	Филонов М. Р., Конюхов Ю. В., Кузнецов Д. В., др.	Методы физико-химических исследований процессов и материалов (N 2928): лаб. практикум	Электронная библиотека	М.: [МИСиС], 2016
		6.1.2. Дополните.	пьная литература	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
П2.1	Васильев В. П.	Физико-химические методы анализа	Библиотека МИСиС	, 1989
П2.2	Филичкина В. А., Скорская О. Л., Муравьева И. В.	Методы и средства аналитического контроля материалов. Химические и физико-химические методы аналитического контроля: учеб. пособие	Библиотека МИСиС	М.: Изд-во МИСиС, 2015
	,	6.3 Перечень програ	ммного обеспечения	
П.1	Microsoft Office			
	MATLAB			
П.2				

УП: 28.04.03-МНМ-22-1.plx cтр. 12

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕС	СКОЕ ОБЕСПЕЧЕНИЕ
Ауд.	Назначение	Оснащение
Б-322	Лаборатория	комплект учебной мебели, стационарные компьютеры/моноболоки 6 шт., ноутбуки - 4 шт. пакет лицензионных программ MS Office, набор демонстрационного оборудования в том числе: доска учебная. Определение качественного и количественного состава образцов методом рентгенофлуоресцентного анализа РАМ 30-µ; Трибометр NANOVEA - определение трибологических свойств материалов; Качественный и количественный фазовый анализ материалов "Дифрей"; Термический анализ твердофазных превращений в режиме линейного нагрева SDT Q600; Определение удельной поверхности порошковых материалов методом низкотемпературной адсорбции азота Quantachrome Nova1200e; Измерение каталитической активности нанесённых Ag/BN катализаторов в реакции окисления СО при помощи масс-спектрометрии ThermoStar GSD 320. Микроиндентор для определения механических
P. 220		характеристик материалов CSM Micro Indentation Tester, Quantachrome Ultrapycnometer - определение плотности
Б-329	Лаборатория	"стационарные компьютеры/моноболоки 6 шт., набор демонстрационного оборудования, в том числе: доска учебная, плазменный телевизор с диагональю 99 см. Определение стабильности коллоидных систем Malvern Zetasizer Nano ZS; Определение размеров частиц методом ультразвуковой спектрометрии Matec Zeta-APS; Спектрофотометрическое определение кинетики окисления Thermo Scientific HeXios a; Определение механизма тушения флуоресценции квантовых частиц с функциональными группами на поверхности Cary Eclipse Fluorescence spectrophotometer; Окислительно-восстановительное потенциометрическое титрование рН-150МИ; Определение поверхностного натяжения и плотности жидкостей KRÜSS Easy Drop DSA 20; Измерение вязкости на ротационном и вибрационном вискозиметрах SV-10, RM-100. Пресс гидравлический ПГМ-100МГ4А СКБ Стройприбор; леофильная сушка - CHRIST ALPHA 1-2 LD; мультиметр """"Актаком"""" """"ABM-4306"""" и источник тока """"Master DC Power Supply HY5010E"""" (снятие ВАХ); весы аналитические """"AND GR-202"""; комплект учебной мебели"
Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:	комплект учебной мебели до 36 мест для обучающихся, мультимедийное оборудование, магнитно-маркерная доска, рабочее место преподавателя, ПКс доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

Лекционные занятия нацелены на изучение студентами общих вопросов. Лабораторные работы занятия нацелены на закрепление на практике лекционного материала и формирование у студентов практических навыков и умений. Проведение аудиторных занятий предусматривает использование в учебном курсе активных и интерактивных технологий: - проведение лекций с использованием интерактивных и мультимедийных технологий (презентация в формате MS PowerPoint);

- использование при проведении занятий специализированной лаборатории с возможностью проведения занятий в интерактивной форме

- использование при проведении лекционных занятий активных форм обучения учебных видеоматериалов и компьютерных тренажеров.

Дисциплина относится к точным наукам и требует значительного объема самостоятельной работы. Отдельные учебные вопросы выносятся на самостоятельную проработку и контролируются посредством текущей аттестации. При этом организуются групповые и индивидуальные консультации. Качественное освоение дисциплины возможно только при систематической самостоятельной работе, что поддерживается системой текущей и рубежной аттестации.