Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное** и государственное автономное образовательное учреждение Дата подписания: 09.07.2023 20:53:24 высшего образования

Уникальный про**фрациональный исследовательский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Методы исследования материалов и структур электроники

Закреплена за подразделением Кафедра материаловедения полупроводников и диэлектриков

Направление подготовки 11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль

 Форма обучения
 очная

 Общая трудоемкость
 3 ЗЕТ

Часов по учебному плану 108 Формы контроля в семестрах:

в том числе: зачет с оценкой 7

 аудиторные занятия
 51

 самостоятельная работа
 57

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	7 (4.1)		Итого	
Недель	1	8		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	17	17	17	17
Лабораторные	17	17	17	17
Практические	17	17	17	17
Итого ауд.	51	51	51	51
Контактная работа	51	51	51	51
Сам. работа	57 57 5		57	57
Итого	108	108	108	108

Программу составил(и):

кфмн, доцент, Жевнеров Евгений Владимирович

Рабочая программа

Методы исследования материалов и структур электроники

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - бакалавриат Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА (приказ от 02.04.2015 г. № 95 о.в.)

Составлена на основании учебного плана:

11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА, 11.03.04-БЭН-22.plx , утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.09.2022, протокол № 8-22

Утверждена в составе ОПОП ВО:

11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА, , утвержденной Ученым советом НИТУ МИСИС 22.09.2022, протокол № 8-22

Рабочая программа одобрена на заседании

Кафедра материаловедения полупроводников и диэлектриков

Протокол от 14.06.2022 г., №13-21/22

Руководитель подразделения Оганов А.Р.

1. ЦЕЛИ ОСВОЕНИЯ

1.1 Научить основам современных физических структурных методов исследования атомного строения материалов и основам структурных методов контроля технологии получения материалов и структур электроники.

	2. M	ЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
	Блок ОП:	Б1.В					
2.1	Требования к предвар	оительной подготовке обучающегося:					
2.1.1	Материаловедение полупроводников и диэлектриков						
2.1.2	-	тика по получению профессиональных умений и опыта профессиональной деятельности					
2.1.3	Производственная прав	тика по получению профессиональных умений и опыта профессиональной деятельности					
2.1.4	Технология материалог	з электронной техники					
2.1.5	Физика диэлектриков						
2.1.6	Физика конденсирован						
2.1.7		зация и технические измерения в магнитоэлектронике					
2.1.8		зация и технические измерения в полупроводниковой электронике					
2.1.9	Статистическая физика						
2.1.10	Физические свойства к	ристаллов					
2.1.11	Электроника						
2.1.12	Математическая статис						
2.1.13	Методы математическо	1					
2.1.14	Основы квантовой меха	аники					
2.1.15	Физика						
2.1.16	Физическая химия						
2.1.17	Электротехника						
2.1.18	Математика						
2.1.19	Органическая химия						
2.1.20	Информатика						
2.1.21	Химия						
2.1.22	Инженерная и компьют						
2.2	Дисциплины (модули) предшествующее:) и практики, для которых освоение данной дисциплины (модуля) необходимо как					
2.2.1	Вакуумная и плазменна	я электроника					
2.2.2	1 1 1	руктуры в наноэлектронике					
2.2.3	Основы радиационной	стойкости изделий электронной техники					
2.2.4	Подготовка к процедуре защиты и защита выпускной квалификационной работы						
2.2.5	Подготовка к процедуре защиты и защита выпускной квалификационной работы						
2.2.6	Преддипломная практика для выполнения выпускной квалификационной работы						
2.2.7		ка для выполнения выпускной квалификационной работы					
2.2.8		Процессы вакуумной и плазменной электроники					
2.2.9	_	тва ферритовых материалов и радиокерамики					
2.2.10		н частиц и излучений с веществом					
2.2.11	Элементы и устройства	магнитоэлектроники					

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ C ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-2: Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения задач в профессиональной области

Знать:

ОПК-2-31 - возможности основных структурных методов исследования строения материалов;

ОПК-2-32 - методы структурного исследования в конкретных задачах анализа строения материалов и приборных структур микро- и наноэлектроники.

ПК-2: Способность контролировать соблюдение режимов технологических операций, процессов производства изделий микроэлектроники

Знать:

ПК-2-31 - возможности основных структурных методов исследования строения материалов;

- методы структурного исследования в конкретных задачах анализа строения материалов и приборных структур микро- и наноэлектроники.
- области эффективного применения рентгеновской топографии, электронографии и микроскопии;
- чувствительность и точность указанных методов;
- теоретические основы методов в объеме достаточном для формулирования задач и анализа результатов.

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Знать:

УК-1-31 - возможности основных структурных методов исследования строения материалов;

- методы структурного исследования в конкретных задачах анализа строения материалов и приборных структур микро- и наноэлектроники.
- чувствительность и точность указанных методов;
- теоретические основы методов в объеме достаточном для формулирования задач и анализа результатов.

ПК-2: Способность контролировать соблюдение режимов технологических операций, процессов производства изделий микроэлектроники

Уметь:

ПК-2-У1 - применять расчеты факторов интенсивности для проведения фазового анализа;

- применять расчеты и индицирование дифрактограмм для идентификации фаз при фазовом анализе;
- осуществлять ориентировку монокристаллов;
- описывать текстуры на основе построения полюсных фигур;
- осуществлять анализ тонкой структуры зерен;
- применять методы рентгеновской дифракционной микроскопии для анализа дефектной структуры монокристаллов;
- осуществлять расчеты электронограмм и их анализ;
- описывать микроструктуры на основе металлографического анализа;
- описывать изображение структур полученных методом просвечивающей электронной микроскопии.

ОПК-2: Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения задач в профессиональной области

Уметь:

ОПК-2-У1 - применять расчеты факторов интенсивности для проведения фазового анализа;

- осуществлять ориентировку монокристаллов;
- описывать текстуры на основе построения полюсных фигур;
- применять методы рентгеновской дифракционной микроскопии для анализа дефектной структуры монокристаллов;
- описывать изображение структур полученных методом просвечивающей электронной микроскопии.

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Уметь:

УК-1-У1 - применять расчеты факторов интенсивности для проведения фазового анализа;

- применять расчеты и индицирование дифрактограмм для идентификации фаз при фазовом анализе;
- осуществлять ориентировку монокристаллов;
- описывать текстуры на основе построения полюсных фигур;
- осуществлять анализ тонкой структуры зерен;
- применять методы рентгеновской дифракционной микроскопии для анализа дефектной структуры монокристаллов;
- осуществлять расчеты электронограмм и их анализ

ПК-2: Способность контролировать соблюдение режимов технологических операций, процессов производства изделий микроэлектроники

Владеть:

ПК-2-В1 - навыками расчетов дифрактограмм;

- навыками использования баз данных структурных параметров кристаллов разных веществ;
- навыками использования компьютерных программ анализа результатов структурных экспериментов;
- навыками анализа изображений полученных с помощью рентгеновских топограмм, оптического микроскопа и просвечивающего электронного микроскопа;
- навыками расчета и анализа электронограмм;
- навыками расчета профилей изображений на картинах, полученных методом просвечивающей электронной микроскопии.

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Владеть:

УК-1-В1 - навыками расчетов дифрактограмм;

- навыками использования баз данных структурных параметров кристаллов разных веществ;
- навыками использования компьютерных программ анализа результатов структурных экспериментов;
- навыками анализа изображений полученных с помощью рентгеновских топограмм, оптического микроскопа и просвечивающего электронного микроскопа;
- навыками расчета и анализа электронограмм;
- навыками расчета профилей изображений на картинах, полученных методом просвечивающей электронной микроскопии.

ОПК-2: Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения задач в профессиональной области

Владеть:

ОПК-2-В1 - навыками расчетов дифрактограмм;

ОПК-2-В2 - навыками использования баз данных структурных параметров кристаллов разных веществ;

- навыками использования компьютерных программ анализа результатов структурных экспериментов.

4. СТРУКТУРА И СОДЕРЖАНИЕ								
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Физические основы дифракционных методов изучения атомного строения вещества							
1.1	Введение. Роль структурных методов в материаловедении и технологии материалов. Основные понятия теории упругого рассеяния коротковолновых излучений. /Лек/	7	1	ОПК-2-31 ОПК-2-У1	Л1.1 Л1.2 Л1.1 Л1.1Л2.1 Л2.2			
1.2	Сложение когерентных волн. Амплитуда рассеяния как преобразование Фурье распределения рассеивающих центров. Обратная решетка. Амплитуда рассеяния кристаллом. /Лек/	7	1	ОПК-2-31 ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2			
1.3	Уравнение Вульфа-Брэгга. Построение Эвальда. Рассеяние кристаллом с базисом. Структурная амплитуда. /Лек/	7	1	ОПК-2-31 ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2			
1.4	Рассеяние кристаллом конечных размеров. Формфактор. Построение Эвальда в этом случае. /Лек/	7	1	ОПК-2-31 ОПК-2-32 ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2			
1.5	Интегральная отражающая способность. Рассеяние рентгеновских лучей кристаллом. Закон ослабления. /Лек/	7	1	ОПК-2-31 ОПК-2-32 ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2			

1.6	Сечение рассеяния электрона, атома элементарной ячейки. Фактор Дебая-Валлера. Фактор ослабления. Спектры рентгеновских лучей. /Лек/	7	1	ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-В1	Л1.1 Л1.2Л2.1 Л2.2		
1.7	Закономерности погасаний и пространственная группа кристаллов. Определение точечной группы кристаллов. /Лек/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1		
1.8	Моделирование плоских сечений обратной решетки. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.9	Физика рентгеновских лучей. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.10	Уравнение Вульфа-Брэгга. Построение Эвальда. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.11	Структурная амплитуда /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.12	Расчет структурной амплитуды для решеток с разным базисом. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.13	Расчет интегральных коэффициентов отражения. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
1.14	Контрольная работа № 1. /Пр/	7	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-В1 ОПК-2-В2 ПК- 2-31 ПК-2-У1 ПК-2-В1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	KM1	
1.15	Аппаратура для рентгеновских исследований. /Лаб/	7	4	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	КМ3	P1
1.16	Самостоятельное изучение литературы, выполнение домашнего задания №1. /Ср/	7	30	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		P5
	Раздел 2. Основные приложения рентгеноструктурных исследований в материаловедении и технологии						
2.1	Метод Лауэ. Определение ориентировки кристаллов. /Лек/	7	2	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2		

2.2	т -			OFFIC 2 333	TT 4 4	 1	
2.2	Поликристаллы, как объект структурного анализа. Рентгеновская дифрактометрия. /Лек/	7	2	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2		
2.3	Измерение интенсивности рассеянного излучения моно- и поликристаллами. Определение структуры элементарной ячейки. /Лек/	7	2	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2		
2.4	Качественный и количественный фазовый анализ. /Лек/	7	2	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2		
2.5	Уточнение ориентировки монокристаллов. Анализ ориентировок в поликристаллах с помощью прямых полюсных фигур. Построение и анализ обратных полюсных фигур. Понятие о функции распределения ориентировок. /Лек/	7	2	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2		
2.6	Метод Лауэ. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.7	Дифрактометрия поликристаллов. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.8	Определение структуры элементарной ячейки. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.9	Прецинзионные измерения периодов решетки. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.10	Расчет нестихиометрии по данным значениям периода и плотности. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.11	Индицирование дифрактограмм кристаллов кубической и тетрагональной сингоний. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.12	Расчет относительной интенсивности отражений на дифрактограмме двухфазной смеси. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.13	Моделирование прямых полюсных фигур при известных данных о плоскости, направлении прокатки и рас-сеянии текстуры. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		
2.14	Оценка физической причины уширения дифракционных максимумов. /Пр/	7	1	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		

2.15	Контрольная работа № 2. /Пр/	7	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-В1 ОПК-2-В2 ПК- 2-31 ПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	KM2	
2.16	Определение ориентировки кристаллов методом Лауэ. /Лаб/	7	6	ПК-2-В1 ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	KM3	P2
2.17	Расчет и индицирование дифрактограмм поликристаллов. /Лаб/	7	3	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	КМ3	Р3
2.18	Построение прямых полюсных фигур и их анализ. /Лаб/	7	4	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1	КМ3	P4
2.19	Самостоятельное изучение литературы, выполнение домашнего задания №2. /Ср/	7	27	ОПК-2-У1	Л1.1 Л1.2Л2.1 Л2.2Л1.1 Э1		P6

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ					
5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки						
Код КМ	Контрольное мероприятие	Проверяемые индикаторы компетенций	Вопросы для подготовки			
KM1	Контрольная работа №1	ОПК-2-31;ОПК-2- 32;ОПК-2-У1	Обратная решетка. Дифракция рентгеновских лучей. Структурная амплитуда. Уравнение Вульфа-Брэгга. Сфера Лауэ.			
KM2	Контрольная работа №2	ОПК-2-В1;ОПК-2- В2;УК-1-31	Определение ориентировки кристаллов методом Лауэ. Расчет и индицирование дифрактограмм поликристаллов. Построение прямых полюсных фигур и их анализ.			

KM3	Защита	УК-1-У1;УК-1-	Примеры вопросов к лабораторным работам:
	лабораторных	В1;ПК-2-31;ОПК-2	Лабораторная работа №1
	работ	-B2	- Классификация рентгеновских трубок для структурного анализа и
			их стандартные обозначения?
			- Из какого материала изготавливают катод и анод трубок для
			структурного анализа?
			- Из какого материала должен быть сделан анод для получения
			характеристического излучения с длиной волны 0,154 нм?
			- Каково назначение рентгеновских аппаратов для структурного
			анализа?
			- Какие особенности имеют камеры для съемки монокристаллов?
			Лабораторная работа №2
			- Какие задачи позволяет решить метод Лауэ?
			- Какой спектр рентгеновского излучения используется в методе
			Лауэ?
			- Почему дифракционным максимумам на лауэграмме не могут
			быть приписаны определенные индексы интерференции HKL?
			- Каковы закономерности в расположении пятен, отраженных от
			плоскостей одной зоны в зависимости от угла между осью зоны и
			направлением первичного рентгеновского луча?
			Лабораторная работа №3
			- Чем вызвано погасание линий на дифрактограмме?
			- Как различить дифрактограммы снятые от веществ примитивной
			и объемноцентрированной решетками?
			- Можно ли по расположению линий на дифрактограмме
			определить от веществ с какой решеткой (ОЦК или ГЦК) снята
			дифрактограмма?
			- Какие линии дифрактограммы целесообразнее использовать для
			определения периода решетки?
5.2. Пе	еречень работ, выпол	няемых по лиспиплине	(Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)

Код работы	Название работы	Проверяемые индикаторы компетенций	Содержание работы
P1	Лабораторная работа №1	ОПК-2-31;ОПК-2- 32;УК-1-31	Аппаратура для рентгеновских исследований.
P2	Лабораторная работа №2	ОПК-2-У1;ОПК-2- В1;ОПК-2-В2	Определение ориентировки кристаллов методом Лауэ.
Р3	Лабораторная работа №3	ОПК-2-B2;УК-1- 31;ПК-2-У1	Расчет и индицирование дифрактограмм поликристаллов.
P4	Лабораторная работа №4	УК-1-У1;УК-1-В1	Построение прямых полюсных фигур и их анализ.
P5	Домашнее задание № 1	ОПК-2-31;ОПК-2- В1;УК-1-31	10 задач по теме "Физические основы дифракционных методов изучения атомного строения вещества"
P6	Домашнее задание № 2	ОПК-2-31;ОПК-2- 32;ПК-2-У1	10 задач по теме "Основные приложения рентгеноструктурных исследований в материаловедении и технологии "

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

экзамен не предусмотрен

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Оценка за зачет формируется как средняя оценка по контрольным работам, домашним работам и защите лабораторных работ.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ 6.1. Рекомендуемая литература 6.1.1. Основная литература Библиотека Авторы, составители Заглавие Издательство, год Л1.1 Уманский Я. С., Библиотека МИСиС М.: Металлургия, 1982 Кристаллография, Скаков Ю. А., рентгенография и Иванов А. Н., электронная микроскопия: Расторгуев Л. Н. Учебник для вузов

	Авторы, составители	Заглавие	Библиотека	Издательство, год				
Л1.2	Бублик В. Т., Дубровина А. Н.	Методы исследования структуры полупроводников	Библиотека МИСиС	М.: Металлургия, 1978				
		и металлов: учеб. пособие для вузов по спец						
		Технология спец. материалов						
		электрон. техники						
		6.1.2. Дополните.	льная литература					
	Авторы, составители	Заглавие	Библиотека	Издательство, год				
Л2.1	Ягодкин Ю. Д.,	Атомное строение фаз.	Электронная библиотека	М.: Учеба, 2007				
	Свиридова Т. А.	Кристаллохимия твердых						
		растворов и промежуточных фаз. Структура аморфных,						
		квазикристаллических и						
		нанокристаллических						
		материалов: курс лекций для						
		студ. спец 'Физика						
		металлов' и 'Наноматериалы'		N. D. WY. 27 - 22 - 2				
Л2.2	Векилова Г. В.,	Дифракционные и	Электронная библиотека	М.: [МИСиС], 2009				
	Иванов А. Н., Ягодкин Ю. Д.	микроскопические методы и приборы для анализа						
	лгодкин го. д.	наночастиц и						
		наноматериалов: учеб.						
		пособие для студ. вузов,						
		обуч. по напр. 'Металлургия'						
		6.1.3. Методиче	ские разработки					
	Авторы, составители	Заглавие	Библиотека	Издательство, год				
Л3.1	Горелик С. С.,	Рентгенографический и	Библиотека МИСиС	М.: Изд-во МИСиС, 1994				
	Скаков Ю. А., Расторгуев Л. Н.	электронно-оптический анализ: Учеб.пособие для						
	1 асторгусь л. 11.	вузов						
Л3.2	Бублик В. Т.,	Сборник задач и упражнений	Библиотека МИСиС	М.: Высш. шк., 1988				
	Дубровина А. Н.	по курсу 'Методы		Í				
		исследования структуры':						
		Учеб. пособие для вузов по						
		спец. 'Физика и технология материалов и компонентов						
		электрон. техники',						
		'Микроэлектроника и						
		полупроводниковые приборы'						
	<u>. </u>	ень ресурсов информационно-	•	и «Интернет»				
31	Программное обеспече кристаллических матер	13 31	http://crystalmaker.com					
		6.3 Перечень програ	ммного обеспечения					
Π.1	Microsoft Office	a an in						
П.2	Лицензии ПО Windows Server CAL ALNG LicSAPk MVL DvcCAL, ПО WinEDUA3 ALNG SubsVL MVL PerUsr и PerUsr							
П.3	ESET NOD32 Antivirus							
П.4	OC Linux (Ubuntu) / Windows							
П.5	Open Modelsphere							
	ProCAST							
П.6	ProCAST	UBTAH TEPMO						
П.6								

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ					
Ауд.	Назначение	Оснащение			

Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.
K-405	Учебная аудитория	микроскоп оптический Метам Р-1 с блоком питания (5 шт.), микроскоп оптический ММУ-3 с блоком питания, микротвердомер ПМТ-3, металлографический микроскоп МИР-12, образцы рентгеновских трубок и рентгеновских камер (3 шт.), набор демонстрационного оборудования в том числе: доска учебная, мультимедийный проектор, ПК, пакет лицензионных программ МS Office, экран проекционный, комплект учебной мебели
K-405	Учебная аудитория	микроскоп оптический Метам Р-1 с блоком питания (5 шт.), микроскоп оптический ММУ-3 с блоком питания, микротвердомер ПМТ-3, металлографический микроскоп МИР-12, образцы рентгеновских трубок и рентгеновских камер (3 шт.), набор демонстрационного оборудования в том числе: доска учебная, мультимедийный проектор, ПК, пакет лицензионных программ МS Office, экран проекционный, комплект учебной мебели
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:	

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

При конспектировании лекций в конспект следует заносить всё, что рекомендует преподаватель. Изучение и отработка прослушанных лекций без промедления значительно экономит время и способствует лучшему усвоению материала. Студентам рекомендуется с самого начала освоения данного курса работать с литературой и предлагаемыми заданиями. При этом актуализируются имеющиеся знания, а также создается база для усвоения нового материала, возникают вопросы, ответы на которые студент получает в аудитории.

При освоении данного курса студент должен пользоваться библиотекой вуза, а также электронными базами учебной литературы, в соответствии с настоящей программой.