Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное государственное автономное образовательное учреждение** Дата подписания: 12.10.2023 12:49:17 **высшего образования**

Уникальный профрациональный исследовательский технологический университет «МИСИС»

d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Инженерная математика

Закреплена за подразделением Кафедра технологии материалов электроники

Направление подготовки 11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль

Квалификация Инженер-исследователь

 Форма обучения
 очная

 Общая трудоемкость
 5 ЗЕТ

Часов по учебному плану 180 Формы контроля в семестрах:

в том числе: зачет с оценкой 6

 аудиторные занятия
 51

 самостоятельная работа
 129

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	6 (3.2)			Итого
Недель	1	8		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	17	17	17	17
Лабораторные	17	17	17	17
Практические	17	17	17	17
Итого ауд.	51	51	51	51
Контактная работа	51	51	51	51
Сам. работа	129	129	129	129
Итого	180	180	180	180

Программу составил(и):

дфмн, профессор, Панина Лариса Владимировна

Рабочая программа

Инженерная математика

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - бакалавриат Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС» по направлению подготовки 11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА (приказ от 28.06.2023 г. № 292 о.в.)

Составлена на основании учебного плана:

11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА, 11.03.04-БЭН-23_6-ПП.plx , утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.06.2023, протокол № 5-23

Утверждена в составе ОПОП ВО:

11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА, , утвержденной Ученым советом НИТУ МИСИС 22.06.2023, протокол № 5-23

Рабочая программа одобрена на заседании

Кафедра технологии материалов электроники

Протокол от 21.06.2023 г., №10

Руководитель подразделения Костишин Владимир Григорьевич

1. ЦЕЛИ ОСВОЕНИЯ

1.1 – Целью освоения дисциплины Инженерная математика является подготовка выпускников к инженерной и научно-исследовательской деятельности в области обработки сигналов, анализа электрических цепей, фильтров и других электронных систем, а также анализа данных наблюдений и экспериментов. Это включает способность разрабатывать на основе современных программных продуктов эффективные алгоритмы решения задач по созданию многокомпонентных систем современной наноэлектроники.

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
	Блок ОП: Б1.В
2.1	Требования к предварительной подготовке обучающегося:
2.1.1	Актуальные проблемы современной электроники и наноэлектроники
2.1.2	Метрология, стандартизация и технические измерения в магнитоэлектронике
2.1.3	Метрология, стандартизация и технические измерения в полупроводниковой электронике
2.1.4	Статистическая физика
2.1.5	Физические свойства кристаллов
2.1.6	Электроника
2.1.7	Математическая статистика и анализ данных
2.1.8	Методы математической физики
2.1.9	Практическая кристаллография
2.1.10	Учебная практика по получению первичных профессиональных умений
2.1.11	Учебная практика по получению первичных профессиональных умений
2.1.12	Физика
2.1.13	Физическая химия
2.1.14	Безопасность жизнедеятельности
2.1.15	Математика
2.1.16	Органическая химия
2.1.17	Химия
2.1.18	Аналитическая геометрия
2.1.19	Инженерная и компьютерная графика
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1	Дефекты в оптоэлектронных полупроводниковых приборах на широкозонных материалах
2.2.2	Ионно-плазменная обработка материалов
2.2.3	Компьютерные технологии проектирования процессов наноэлектроники
2.2.4	Материаловедение ферритов и родственных магнитных систем
2.2.5	Научно-исследовательская работа
2.2.6	Научно-исследовательская работа
2.2.7	Основы технологии электронной компонентной базы. Технология тонких пленок
2.2.8	Полевые полупроводниковые приборы
2.2.9	Полупроводниковая наноэлектроника
2.2.10	Приемники оптического излучения
2.2.11	Физика импульсного отжига
2.2.12	Физико-математические модели процессов наноэлектроники
2.2.13	Физические основы электроники
2.2.14	Функциональная наноэлектроника
2.2.15	Вакуумная и плазменная электроника
2.2.16	Квантоворазмерные структуры в наноэлектронике
2.2.17	Магнитные измерения
2.2.18	Математические модели технологических процессов получения магнитоэлектроники и радиокерамики
2.2.19	Моделирование технологических процессов получения материалов электронной техники
2.2.20	Наноэлектроника полупроводниковых приборов и устройств
2.2.21	Оборудование производства ферритовых материалов и радиокерамики
2.2.22	Основы радиационной стойкости изделий электронной техники
2.2.23	Основы технологии электронной компонентной базы
•	

2.2.24	Приборы квантовой и оптической электроники
2.2.25	Производственная практика по получению профессиональных умений и опыта профессиональной деятельности
2.2.26	Производственная практика по получению профессиональных умений и опыта профессиональной деятельности
2.2.27	Процессы вакуумной и плазменной электроники
2.2.28	Технология производства ферритовых материалов и радиокерамики
2.2.29	Физика взаимодействия частиц и излучений с веществом
2.2.30	Элементы и устройства магнитоэлектроники
2.2.31	Методы математического моделирования
2.2.32	Методы характеризации полупроводниковых материалов и структур
2.2.33	Моделирование процессов и устройств полупроводниковой электроники
2.2.34	Силовые полупроводниковые приборы
2.2.35	Физика квантоворазмерных полупроводниковых композиций
2.2.36	Физика наноструктур
2.2.37	Физико-химия и технология наноструктур
2.2.38	Мессбауэровская спектроскопия материалов магнитоэлектроники и микросистемной техники
2.2.39	Микросхемотехника
2.2.40	Молекулярно-пучковая и МОС-гидридная технологии
2.2.41	Приборные структуры на некристаллических материалах
2.2.42	Приборные структуры на широкозонных полупроводниках
2.2.43	Приборы и устройства на основе наносистем
2.2.44	Специальные вопросы физики магнитных явлений в конденсированных средах Часть 1
2.2.45	Технология наногетероструктур
2.2.46	Основы надежности элементной базы электроники в условиях ионизирующего излучения космического пространства
2.2.47	Проектирование и технология электронной компонентной базы
2.2.48	Радиационно-технологические процессы в электронике
2.2.49	Технологии материалов для радиопоглащения и электромагнитного экранирования
2.2.50	Физика и техника магнитной записи
2.2.51	Электроника органических полупроводников (материалы, технологии, приборы)
2.2.52	Электронные и оптические свойства широкозонных соединений А2В6
2.2.53	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.54	Подготовка к процедуре защиты и защита выпускной квалификационной работы

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Знать:

ОПК-1-32 понятие случайных величин и их законов распределения

ОПК-1-31 основные интегральные преобразования: Фурье и Лапласа, основные дискретные преобразования: Z-преобразование

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Знать:

ПК-5-31 тенденции и перспективы развития математических методов для исследования проблем электроники, обработки информации и исследования спектров реальных сигналов

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Знать:

ОПК-1-33 основные инженерные функции и их применение в обработке сигналов

УК-2: Способен собирать и интерпретировать данные и определять круг задач в рамках поставленной цели, выбирать оптимальные способы решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, умение обосновывать принятые решения

Знать:

УП: 11.03.04-БЭН-23 6-ПП.plx ctp. 5

УК-2-31 Основные проблемы в анализе и применении устройств микро- и наносистемной техники

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Уметь:

ОПК-1-У1 вычислять интегральные преобразования основных инженерных функций

ОПК-1-У2 строить амплитудные и фазовые характеристики в частотном пространстве

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Уметь:

ПК-5-У1 решать дифференциальные уравнения с начальными условиями, описывающие работу электронных схем, с помощью преобразования Лапласа

УК-2: Способен собирать и интерпретировать данные и определять круг задач в рамках поставленной цели, выбирать оптимальные способы решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, умение обосновывать принятые решения

Уметь:

УК-2-У1 исследовать системы на устойчивость с помощью передаточных функций

УК-2-У4 анализировать спектральные особенности шумов с использованием законов случайных величин

УК-2-УЗ находить основные характеристики дискретных величин с использованием законов распределения

УК-2-У2 исследовать дискретные системы с обратной связью с помощью Z-преобразования

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Владеть:

ПК-5-В1 критическим опытом понимания перспектив развития математических методов исследования электрических сигналов и электронных систем

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Владеть:

ОПК-1-В1 Навыки анализа экспериментальных данных с помощью теории случайных величин

УК-2: Способен собирать и интерпретировать данные и определять круг задач в рамках поставленной цели, выбирать оптимальные способы решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений, умение обосновывать принятые решения

Владеть:

УК-2-В1 опытом решения конкретных задач электроники и томографии с помощью математических методов интегральных преобразований

		4. CTI	РУКТУР	А И СОДЕРЖА	ние			
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	KM	Выполн яемые работы
	Раздел 1. Интегральное преобразование Фурье							
1.1	Свойства интегрального преобразования Фурье, инженерные функции /Лек/	6	2	ОПК-1-31 ОПК-1-У1 УК -2-В1	Л1.1Л2.2 Л2.3 Э1	Подробный лекционный материал будет опубликован в системе LMS Moodle		
1.2	Подготовка к практической работе /Ср/	6	16	ПК-5-31 ОПК- 1-31 УК-2-В1 УК-2-31	Л1.1Л2.2 Л2.3Л3.1 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle		

1.3	Передаточная функция, устойчивость системы, свертки /Лек/	6	2	ОПК-1-31 ОПК-1-33 УК- 2-У2 УК-2-31	Л1.1Л2.2 Л2.3 Э1	Подробный лекционный материал будет опубликован в системе LMS Moodle		
1.4	Вычисление интегралов Фурье от «инженерных» функций /Лаб/	6	6	ПК-5-В1 ОПК- 1-33 ОПК-1- У1	Л1.1Л2.2 Л2.3Л3.1 Э1	Работа загружается в систему LMS Moodle		P4
1.5	Амплитудные и фазовые характеристики преобразований Фурье, анализ системы на устойчивость, применение методов сверток для нахождения отклика системы /Пр/	6	3	ПК-5-В1 ОПК- 1-31 ОПК-1- У1 ОПК-1-У2 УК-2-У1 УК-2 -У4 УК-2-В1	Л1.1Л2.2 Л2.3Л3.1 Э1	Работа загружается в систему LMS Moodle		P5
1.6	Подготовка к практическим занятиям и курсовой работы по теме /Ср/	6	20	ПК-5-31 ПК-5- В1 ОПК-1-31 ОПК-1-33 ОПК-1-У1 ОПК-1-У2 УК -2-У1 УК-2-31 УК-2-В1	Л1.1Л2.2 Л2.3 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle		P1
	Раздел 2. Интегральное преобразование Лапласа							
2.1	Свойства интегрального преобразования Лапласа /Лек/	6	2	ОПК-1-31 УК- 2-31	Л1.2Л2.2 ЭІ	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle		
2.2	Вычисление интегралов Лапласа с использованием основных свойств /Лаб/	6	6	ОПК-1-У1 УК -2-В1	Л1.2Л2.2 Л2.3 Э1	Работа загружается в систему LMS Moodle		P6
2.3	Подготовка к практической работе /Cp/	6	16	ПК-5-31 ПК-5- В1 ОПК-1-31 ОПК-1-33 ОПК-1-У1	Л1.2Л2.2 Л2.3 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle		
2.4	Решение дифференциальных уравнением методом преобразования Лапласа, анализ электрических цепей /Лек/	6	4	ПК-5-31 ПК-5- У1 ОПК-1-31 ОПК-1-У1	Л1.2Л2.1 Л2.2 Э1	Подробный лекционный материал будет опубликован в системе LMS Moodle	KM1	
2.5	Решение дифференциальных уравнений методом преобразования Лапласа, анализ RLC цепей /Пр/	6	4	ОПК-1-31 ОПК-1-33 УК- 2-В1 ПК-5-31 ПК-5-У1 ПК-5 -В1	Л2.1 Л2.2 Л2.3 Э1	Работа загружается в систему LMS Moodle		P7
2.6	Подготовка к практическим занятиям и курсовой работе по теме /Ср/	6	20	ОПК-1-31 ОПК-1-33 ОПК-1-У1 ПК -5-31 ПК-5-В1 ПК-5-У1	Л1.2Л2.1 Л2.2 Л2.3 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle		

2.7	Передаточная функция,	6	2	УК-2-У1 УК-2	Л1.2Л2.1	Подробный	
	устойчивость системы, функция Хэвисайда. /Лек/			-31 УК-2-В1	Л2.2 Э1	лекционный материал будет опубликован в системе	
						LMS Moodle	
2.8	Исследование систем на устойчивость /Лаб/	6	5	ОПК-1-В1 УК- 2-31 УК-2-У1 УК-2-У4 ПК-5 -В1	Л1.2Л2.1 Л2.2 Л2.3 Э1	Работа загружается в систему LMS Moodle	P8
2.9	Подготовка к практическим занятиям и курсовой работы по теме /Ср/	6	20	ОПК-1-31 ОПК-1-33 ОПК-1-У1 УК -2-31 УК-2-У1 УК-2-В1 ПК-5 -31 ПК-5-В1 ПК-5-У1	Л1.2Л2.1 Л2.2 Л2.3 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle	P2
	Раздел 3. Дискретное Z- преобразование						
3.1	Свойства дискретного Z- преобразования /Лек/	6	2	ОПК-1-32 ОПК-1-31 ОПК-1-B1 УК- 2-31 УК-2-У2 УК-2-У3 ПК-5 -31 ПК-5-B1	Л1.2 Л1.3 Л1.4Л3.1 Э1	Подробный лекционный материал будет опубликован в системе LMS Moodle	
3.2	Нахождение Z- преобразования от дискретных сигналов /Пр/	6	4	ОПК-1-31 ОПК-1-В1 УК- 2-31 УК-2-У2 УК-2-У1	Л1.2 Л1.3 Л1.4Л3.1 Э1	Работа загружается в систему LMS Moodle	P9
3.3	Подготовка к практическим занятиям /Ср/	6	17	ОПК-1-31 ОПК-1-32 ОПК-1-В1 УК- 2-У2 УК-2-У3 УК-2-В1 УК-2 -31 ПК-5-31 ПК-5-В1	Л1.3 Л1.4Л3.1 Э1	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle	
3.4	Применение Z- преобразования к анализу систем с обратной связью /Лек/	6	3	ОПК-1-31 УК- 2-У2 УК-2-31	Л1.3 Л1.4Л3.1 ЭІ	Подробный лекционный материал будет опубликован в системе LMS Moodle	
3.5	Анализ фильтров с обратной связью с помощью Z-преобразования /Пр/	6	6	ОПК-1-31 УК- 2-У2 УК-2-У3 УК-2-В1	Л1.3 Л1.4Л3.1 Э1	Работа загружается в систему LMS Moodle	P10
3.6	Подготовка к практическим занятиям и курсовой работы по теме /Ср/	6	20	ОПК-1-31 ОПК-1-В1 ОПК-1-32 УК- 2-31 УК-2-У2 УК-2-У3 УК-2 -В1	Л1.3 Л1.4Л3.1 ЭІ	Допольнител ьные материалы будут опубликован ы в системе LMS Moodle	Р3

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ				
5.	5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки				
Код КМ	Т НЕ ИНЛИКАТОРЫ I ВОПРОСЫЛЛЯ ПОЛГОТОВКИ				
KM1	Экзамен	ОПК-1-31;ОПК-1-	,		

32;ОПК-1-33;УК-2- 31;ПК-5-31	Упростите .
	Найдите преобразование Фурье от sgn(t) sinc(t).
	Найдите выходной сигнал, если на вход подан сигнал , х $(t) = \cos(t)$, и известно, что при входном импульсном сигнале отклик есть $h(t) = U(t)$.
	Решите обыкновенное дифференциальное уравнение C начальным условием: $t=0,x=0.$
	В последовательной RLC схеме в начальный момент на емкости нет заряда, напряжение $e=50V,\ R=2^*,\ L=1H,\ C=0.25F.$ Если ключ закрывается при $t=0$, найдите зависимость тока от времени $i(t)$.
	Используя преобразование Лапласа, решите следующие уравнения:
	(i) $x = 2 \text{ при } t = 0,$
	(ii) $x' - 4x = 8$, $x(0) = 2$. (iii) $y'(0) = y(0) = 0$. Изобразите графически следующие дискретные сигналы, выпишите несколько первых членов и найдите преобразование z . a) $x(t) = t2$ sampled at $t = 0, 0.5, 1$ b) $x(t) = e - t$ sampled at $t = 0, 0.1, 0.2$ c) $x(t) = U(t - 4T)$ sampled at $t = 0, 1, 2$
	8. Предполагая, что период дискретизации, Т, определите z - преобразования a) cosh(5t) b) cos(2t) + sin(2t) c) e-a(t-1) d) {0,0,T,2T,3T,} e) t time advanced by 2 sampling periods f) e-2t(t2-1)
	9. Определите последовательности, которые соответствуют обратному z-преобразованию а) b)
	c) d) [Use z3X(z) and the first shift theorem] e) [Use the first shift theorem]
	Примеры экзаменационных вопросов Изобразите графически следующие сигналы и определите их Фурье преобразование:
	$x_1(t)=2 \operatorname{rect}(t-1/2)$ $x_2(t)=\{ \blacksquare (t, -1 \le t \le 1 @0 , \text{otherwise}) \}$
	(2) Определите действительную и мнимую части $\Phi\Pi$ в (1). (3) $\Phi\Pi$ G сигнала $g(t)=\exp(-\pi t^2)$ имеет тот же функциональный вид $G(f)=F[g(t)]=\exp(-\pi f^2)$. Используя свойства $\Phi\Pi$, найдите $\Phi\Pi$ от $g_1(t)=\exp(-\pi at^2)$, где а реальное положительное число.
	(4) Используйте преобразование Лапласа (ЛП) для решения следующего уравнения:

			(5) Определите ЛП от
			$y_1(t)=t^3 U(t-1),y_2(t)=t^3 (U(t)-U(t-1))$
			Изобразите y1(t) и y2(t) графически.
			(6) Определите обратное ЛП
			(б) Определите боратное ли
			V\(\langle 7_2\)/(-\(\langle 2 + 4_2 + 5\)
			$Y=e^{(-7s)/(s^2+4s+5)}$
			(7)
			(7) Ответ системы на импульсный вход
			есмт
			(1) (2)
			$g(t)=e^{-(-t)}\sin 2t$
			Используя ЛП, определите передаточную функцию
			системы
			Исследуйте стабильность системы
			(8) Используйте теорему о свертках для определения
			обратного ЛП
			Обратного ли
			1/(s(s+2))
			$1/(S(S^{+}2))$
			D
			Рассмотрите следующую дискретную систему с
			обратной связью:
			Определите передаточную функцию и исследуйте
			устойчивость системы.
			Определите отклик системы на входной сигнал x(n) = 0.2n?
5.2. Переч	ень работ, выпол <mark>няе</mark>	мых по дисципли не (Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)
IC	11	Проверяемые	
Код	Название	индикаторы	Содержание работы
работы	работы	компетенций	
P1	Курсовая работа 1	ОПК-1-У1;ОПК-1-	Вычисление интегралов Фурье от «инженерных» функций

Код работы	Название работы	Проверяемые индикаторы компетенций	Содержание работы	
P1	Курсовая работа 1	ОПК-1-У1;ОПК-1- У2	Вычисление интегралов Фурье от «инженерных» функций Амплитудные и фазовые характеристики преобразований Фурье	
P2	Курсовая работа 2	УК-2-У1;ПК-5-У1	Вычисление интегралов Лапласа с использованием основных свойств Решение дифференциальных уравнений методом преобразования Лапласа Исследование задач на устойчивость	
Р3	Курсовая работа 3	ОПК-1-В1;УК-2- У2;УК-2-У3	Нахождение Z-преобразования от дискретных сигналов Анализ фильтров с обратной связью с помощью Z-преобразования Работа со случайными величинами и их распределениями	
P4	ПР1	ОПК-1-У1;ПК-5-В1	Вычисление интегралов Фурье от «инженерных» функций	
P5	ПР2	ОПК-1-У2;УК-2-У1	Амплитудные и фазовые характеристики преобразований Фурье, анализ системы на устойчивость, применение методов сверток для нахождения отклика системы	
P6	ПР3	ОПК-1-У1;ПК-5-У1	Вычисление интегралов Лапласа с использованием основных свойств	
P7	ПР4	ОПК-1-У1;УК-2- В1;ПК-5-У1	Решение дифференциальных уравнений методом преобразования Лапласа, анализ RLC цепей	

P8	ПР5	УК-2-У1;УК-2- В1;ПК-5-В1	Исследование систем на устойчивость
P9	ПР6	ОПК-1-В1;УК-2- У2;УК-2-У3	Нахождение Z-преобразования от дискретных сигналов
P10	ПР7	ОПК-1-В1;УК-2- В1;ПК-5-В1	Анализ фильтров с обратной связью с помощью Z-преобразования

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Экзамен не предусмотрен

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Письменный контроль - Курсовые работы

Письменный контроль - Реферат

Устный контроль - Собеседование

Для оценивания уровня освоения материала по дисциплине используется следующая шкала оценок:

«отлично» – студент показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно действует по применению полученных знаний на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литературу; «хорошо» – студент показывает твердые и достаточно полные знания в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, правильно действует по применению знаний на практике, четко излагает материал;

«удовлетворительно» – студент показывает знания в объеме пройденной программы, ответы излагает хотя и с ошибками, но уверенно исправляемыми после дополнительных и наводящих вопросов, правильно действует по применению знаний на практике;

«неудовлетворительно» – студент допускает грубые ошибки в ответе, не понимает сущности излагаемого вопроса, не умеет применять знания на практике, дает неполные ответы на дополнительные и наводящие вопросы.

	0. y 4E)	БНО-МЕТОДИЧЕСКОЕ И ИН 6.1. Рекомендуе	емая литература	пеление			
6.1.1. Основная литература							
	Авторы, составители	Заглавие	Библиотека	Издательство, год			
Л1.1	Волков В. А.	Ряды Фурье. Интегральные преобразования Фурье и Радона: учебное пособие	Электронная библиотека	Екатеринбург: Издательство Уральского университета, 2014			
Л1.2	Кожевников Н. И., Краснощекова Т. И., Шишкин Н. Е., Игнатьева А. В.	Ряды и интеграл Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа: учебное пособие	Электронная библиотека	Москва: Наука, 1964			
Л1.3	Плужникова Елена Леонидовна, Разумейко Борис Григорьевич	Математический анализ. Ряды: учеб. пособие	Электронная библиотека	М.: Изд-во МИСиС, 2011			
Л1.4	Макаров Петр Витальевич, Адигамов Аркадий Энгелевич, Семенова Наталья Вячеславовна, Дамиан Ф. Л.	Математика. Числовые, функциональные ряды, ряды Фурье (N 2782): учеб. пособие	Электронная библиотека	М.: [МИСиС], 2019			
		6.1.2. Дополните	льная литература				
	Авторы, составители	Заглавие	Библиотека	Издательство, год			
Л2.1	Лере Ж., Борисова Д. Ф.	Обобщенное преобразование Лапласа, переводящее унитарное решение гиперболического оператора в его фундаментальное	Электронная библиотека	Москва: Мир, 1969			

решение (задача Коши IV)

	Авторы, составители	Заглавие	Библиотека	Издательство, год	
Л2.2	Смирнов В. И.	Курс высшей математики: учебное пособие	Электронная библиотека	Москва: Наука, 1981	
Л2.3	Куприянов Вячеслав Васильевич	Прикладная математика (N 2727): учеб. пособие	Электронная библиотека	М.: [МИСиС], 2016	
	1	6.1.3. Методиче	еские разработки		
	Авторы, составители	Заглавие	Библиотека	Издательство, год	
Л3.1	Сёмина Галина Маратовна, Данченков Игорь Викторович	Высшая математика. Ряды Фурье. Преобразование Фурье (N 2975): практикум	Электронная библиотека	М.: [МИСиС], 2018	
	6.2. Переч	ень ресурсов информационно-	•	-	
Э1	Справочник по инженерной математике https://profsector.com/media/catalogs/58c585d2967ff.pdf				
		6.3 Перечень програ	аммного обеспечения		
П.1	Лицензии ПО Windows Server CAL ALNG LicSAPk MVL DvcCAL, ПО WinEDUA3 ALNG SubsVL MVL PerUsr и PerUsr				
П.2	Microsoft Office				
П.3	LMS Canvas				
П.4	MS Teams				
П.5	Microsoft Visual Studio 2015				
	6.4. Перечень информационных справочных систем и профессиональных баз данных				
И.1	Научная электронная библиотека eLIBRARY.RU (http://elibrary.ru/)				
И.2	Springerlink (https://link.springer.com/)				
И.3	Web of Science (WOS) (https://apps.webofknowledge.com)				
И.4	Scopus (https://www.scopus.com/)				
И.5	Elsevier (https://www.sciencedirect.com/)				

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ						
Ауд.	Назначение	Оснащение				
Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.				
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:	комплект учебной мебели до 36 мест для обучающихся, мультимедийное оборудование, магнитно-маркерная доска, рабочее место преподавателя, ПКс доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus				
Любой корпус Компьютерный класс	Учебная аудитория для проведения практических занятий:	экран, проектор, доска, комплект учебной мебели на 30 посадочных мест, персональные компьютеры, доступ к ЭИОС университета LMS Canvas, лицензионные программы MS Teams, MS Office				
K-432	Лаборатория	Лабораторное оборудование				

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

- 1. Лекции проводятся с использованием компьютерной презентационной программы PowerPoint и содержат анимационные представления с использованием програмного обеспечения Mathematica
- 2. Домашние задания выполняются с использованием программных средств:

для математических вычислений – Mathematica;

для моделирования технологических процессов- среды программирования Visual C++, Mathematica.

Эти же средства используются для выполнения самостоятельных проектов.

3. Для успешного освоения изучаемой дисциплины для студентов организуются еженедельные консультации в компьютеризированном классе.

Обучение организуется в соответствии с настоящей программой. Самостоятельная работа студентов организуется и контролируется путем индивидуального опроса студентов во время практических занятий. Студенты также выполняют индивидуальные и групповые проекты, которые оцениваются путем презентации и демонстрации.

Перед началом занятий студенты знакомятся с графиком выдачи и сдачи домашних заданий и проектов. Рекомендуется на каждом практическом занятии проводить экспресс-опрос (с проставлением оценки) с целью установления усвояемости дисциплины.