Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное** и государственное автономное образовательное учреждение Дата подписания: 22.09.2023 10:04:45 высшего образования

Уникальный про**фрациональный исследовательский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Физика поверхностей раздела в твердых телах

Закреплена за подразделением Кафедра физической химии

Направление подготовки 28.04.03 НАНОМАТЕРИАЛЫ

Профиль Композиционные наноматериалы

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 4 ЗЕТ

Часов по учебному плану 144 Формы контроля в семестрах:

в том числе: зачет 1

 аудиторные занятия
 51

 самостоятельная работа
 93

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1.1)			Итого			
Недель	18						
Вид занятий	УП	РΠ	УП	РП			
Лекции	17	17	17	17			
Лабораторные	34	34	34	34			
Итого ауд.	51	51	51	51			
Контактная работа	51	51	51	51			
Сам. работа	93	93	93	93			
Итого	144	144	144	144			

УП: 28.04.03-MHM-23-1.plx cтр. 2

Программу составил(и):

д.ф.-м.н., проф., Бокштейн Борис Самуилович;к.т.н., доц., Похвиснев Юрий Валентинович

Рабочая программа

Физика поверхностей раздела в твердых телах

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - магистратура Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС» по направлению подготовки 28.04.03 НАНОМАТЕРИАЛЫ (приказ от 05.03.2020 г. № 95 о.в.)

Составлена на основании учебного плана:

28.04.03 Наноматериалы, 28.04.03-МНМ-23-1.plx Композиционные наноматериалы, утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.06.2023, протокол № 5-23

Утверждена в составе ОПОП ВО:

28.04.03 Наноматериалы, Композиционные наноматериалы, утвержденной Ученым советом НИТУ МИСИС 22.06.2023, протокол № 5-23

Рабочая программа одобрена на заседании

Кафедра физической химии

Протокол от 22.06.2021 г., №11-20/21

Руководитель подразделения Салимон А.И.

1. ЦЕЛИ ОСВОЕНИЯ								
Целью освоений дисциплины «Физика поверхностей раздела в твердых телах» является подготовка выпускников, способных применять полученные компетенции при решении проблем, возникающих в их профессиональной деятельности								
Задачи: научить решению задач разработки новых и совершенствования существующих материалов за счет управления кристаллической структурой и свойствами поверхностей раздела								

	2. M	ЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
	Блок ОП:	Б1.О						
2.1	Требования к предвар	ительной подготовке обучающегося:						
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:							
2.2.1	Методология и практик	са определения размерных характеристик наноматериалов						
2.2.2	Методы исследования	материалов						
2.2.3	Нанобезопасность							
2.2.4	Наноразмерные сверхт	вердые материалы и алмазоподобные пленки						
2.2.5	Научно-исследовательс	ская практика						
2.2.6	Неравновесные конденсированные системы, часть 2							
2.2.7	Термодинамическое мо	делирование химических процессов в многокомпонентных гетерогенных системах						
2.2.8	Технологии получения	материалов						
2.2.9	Физика магнитных явло	ений						
2.2.10	Философские вопросы	естествознания						
2.2.11	Методы исследования	характеристик и свойств материалов						
2.2.12	Экспериментальные ме	тоды физики наноматериалов						
2.2.13	Электронные свойства	неметаллических материалов						
2.2.14	Научно-педагогическая	практика						
2.2.15	Подготовка к процедур	е защиты и защита выпускной квалификационной работы						
2.2.16	Преддипломная практи	ка						

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Знать:

УК-1-31 методы термодинамического и кинетического анализа процессов на поверхностях раздела

ОПК-5: Способен использовать инструментарий формализации инженерных, научно-технических задач, прикладное программное обеспечение для моделирования, разработки и проектирования объектов, систем и процессов

Уметь:

ОПК-5-У1 использовать инструментарий формализации инженерных, научно-технических задач

ПК-1: Способен самостоятельно ставить конкретные задачи научных исследований в области получения и исследования наноматериалов и проводить испытания наноструктурированных композиционных материалов в соответствии с новыми техническими требованиями и осуществлять их контроль

Уметь:

ПК-1-У1 самостоятельно ставить конкретные задачи научных исследований в области получения и исследования наноматериалов

ОПК-4: Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач

Уметь:

ОПК-4-У1 выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента

П: 28.04.03-МНМ-23-1.plx

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Уметь:

УК-1-У1 составлять термодинамические и кинетические модели и описывать условия эволюции и равновесия этих процессов

ОПК-4: Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач

Владеть:

ОПК-4-В1 навыками выполнения исследований при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Владеть:

УК-1-В1 навыками самостоятельной работы с литературой для поиска информации об отдельных определениях, понятиях и терминах

		4. CTI	РУКТУР	А И СОДЕРЖА	ние			
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Виды поверхностей раздела							
1.1	Виды поверхностей раздела /Лек/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э4 Э5			
1.2	Выполнение индивидуального задания /Ср/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э4 Э5			
1.3	Компьютерное моделирование поверхностных явлений /Лаб/	1	4	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э4 Э5			
	Раздел 2. Термодинамика поверхностных явлений							
2.1	Метод избытков Гиббса /Лек/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э4			
2.2	Выполнение индивидуального задания /Ср/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э4			

УП: 28.04.03-MHM-23-1.plx cтр. 5

2.3	Компьютерное	1	4	УК-1-31 УК-1-	Л1.1 Л1.2		
	моделирование адсорбционных			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
	явлений /Лаб/			ОПК-4-В1	91 92 93 94		
				ОПК-5-У1 ПК -1-У1			
2.4	Изотермы адсорбции и	1	2	УК-1-31 УК-1-	Л1.1 Л1.2		
	поверхностного натяжения /Лек/			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
				ОПК-4-В1	31 32 33 34		
				ОПК-5-У1 ПК -1-У1			
2.5	Выполнение	1	2	УК-1-31 УК-1-	Л1.1 Л1.2		
	индивидуального задания /Ср/			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
				ОПК-4-В1	91 92 93 94		
				ОПК-5-У1 ПК -1-У1			
2.6	Компьютерное	1	4	УК-1-31 УК-1-	Л1.1 Л1.2		
	моделирование адсорбционных			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
	явлений /Лаб/			ОПК-4-В1 ОПК-5-У1 ПК	91 92 93 94		
				-1-Y1			
2.7	Методы измерения адсорбции и	1	1	УК-1-31 УК-1- У1 УК-1-В1	Л1.1 Л1.2 Л1.3Л2.1Л3.		
	поверхностного натяжения			ОПК-4-У1	1 11.3312.1313.		
	/Лек/			ОПК-4-В1 ОПК-5-У1 ПК	91 92 93 94		
				-1-Y1			
2.8	Выполнение индивидуального	1	2	УК-1-31 УК-1- У1 УК-1-В1	Л1.1 Л1.2 Л1.3Л2.1Л3.		
	задания /Ср/			ОПК-4-У1	1		
				ОПК-4-В1 ОПК-5-У1 ПК	91 92 93 94		
				-1-У1			
2.9	Компьютерное моделирование	1	4	УК-1-31 УК-1- У1 УК-1-В1	Л1.1 Л1.2 Л1.3Л2.1Л3.	KM1	
	адсорбционных			ОПК-4-У1	1		
	явлений /Лаб/			ОПК-4-В1 ОПК-5-У1 ПК	91 92 93 94		
				-1-У1			
	Раздел 3. Диффузия в твердых телах						
3.1	Уравнения диффузии	1	1	УК-1-31 УК-1-	Л1.1 Л1.2		
	/Лек/			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
				ОПК-4-В1	Э 4 Э5		
				ОПК-5-У1 ПК -1-У1			
3.2	Выполнение	1	8	УК-1-31 УК-1-	Л1.1 Л1.2		
	индивидуального задания /Ср/			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
				ОПК-4-В1 ОПК-5-У1 ПК	Э4 Э 5		
				-1-Y1			
3.3	Компьютерное	1	4	УК-1-31 УК-1-	Л1.1 Л1.2		
	моделирование объемной диффузии /Лаб/			У1 УК-1-В1 ОПК-4-У1	Л1.3Л2.1Л3. 1		
				ОПК-4-В1 ОПК-5-У1 ПК	Э4 Э 5		
				-1-Y1			
	-	•	•	•	!		

	1	1		i		1	
3.4	Случайные блуждания. Вакансионный механизм /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
3.5	Выполнение индивидуального задания /Ср/	1	4	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
3.6	Компьютерное моделирование объемной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
3.7	Методы определения коэффициента диффузии /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
3.8	Выполнение индивидуального задания /Ср/	1	7	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
3.9	Компьютерное моделирование зернограничной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э4 Э5		
	Раздел 4. Диффузия по границам зерен						
4.1	Диффузия в границах зерен /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
4.2	Выполнение индивидуального задания /Ср/	1	6	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		Р3
4.3	Методы определения коэффициента диффузии в границах зерен /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
4.4	Компьютерное моделирование зернограничной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		

4.5	Зернограничная сегрегация и зернограничная диффузия /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
4.6	Компьютерное моделирование зернограничной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
4.7	Выполнение индивидуального задания /Ср/	1	6	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
	Раздел 5. Процессы на поверхностях раздела						
5.1	Диффузионный рост /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3 Э5		
5.2	Выполнение индивидуального задания /Ср/	1	16	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
5.3	Компьютерное моделирование зернограничной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
5.4	Сглаживание поверхностного гофра /Лек/	1	1	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
5.5	Выполнение индивидуального задания /Ср/	1	16	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
5.6	Компьютерное моделирование зернограничной диффузии /Лаб/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		
5.7	Канавки термического и жидкометаллического травления /Лек/	1	2	УК-1-31 УК-1- У1 УК-1-В1 ОПК-4-У1 ОПК-4-В1 ОПК-5-У1 ПК -1-У1	Л1.1 Л1.2 Л1.3Л2.1Л3. 1 Э1 Э2 Э3		

5.8	Выполнение	1	16	УК-1-31 УК-1-	Л1.1 Л1.2		
	индивидуального			У1 УК-1-В1	Л1.3Л2.1Л3.		
	задания /Ср/			ОПК-4-У1	1		
				ОПК-4-В1	91 92 93		
				ОПК-5-У1 ПК			
				-1-У1			
5.9	Компьютерное	1	2	УК-1-31 УК-1-	Л1.1 Л1.2		
	моделирование			У1 УК-1-В1	Л1.3Л2.1Л3.		
	зернограничной			ОПК-4-У1	1		
	диффузии /Лаб/			ОПК-4-В1	91 92 93		
				ОПК-5-У1 ПК			
				-1-У1			
5.10	Выполнение	1	6	УК-1-31 УК-1-	Л1.1		
	индивидуального задания.			У1 УК-1-В1	Л1.2Л2.1Л3.		
	Подготовка к зачету /Ср/			ОПК-4-У1	1		
				ОПК-4-В1	91 92 94 95		
				ОПК-5-У1 ПК			
				-1-У1			

			-1-Y1							
		5. ФОНД ОП	ЕНОЧНЫХ МАТЕР	ИАЛОВ						
5.	.1. Контрольные мер	оприятия (контроль			мен и т.п). воп	посы для				
	itom pombilbio mep		лал расста, тест, кол оятельной подготовн		1011 11 1111), 2011	росы дин				
	1	Проверяемые	1							
Код	Контрольное	индикаторы	Вопросы для подготовки							
KM	мероприятие	компетенций	Бопросы для подготовки							
KM1	Тест	УК-1-У1;УК-1-	1. При увел	ичении темпер	ратуры от 100 С	С до 300 С				
		31;УК-1-В1;ОПК-4-	поверхностное натя							
		У1;ОПК-4-В1;ОПК	Дж/м^2. Определит							
		-5-У1;ПК-1-У1			ое натяжение р		Дж/м2.			
			Определите поверх							
			поверхностное сгуп	-	составляет 1,71	Е-3 Дж/(К.м	м^2) и			
			не зависит от темпе 3. Определи		ное сгущение в	กบรากอบบอลั				
			энергии, энтальпии							
			Гиббса, теплоемкос							
			поверхностного нат		\ /					
			уравнению $\sigma = 1,5$ –							
			4. При 500 К поверхностное сгущение внутренней энерги							
				оставляет 2 Дж/м^2, а энтропии 4Е-4 Дж/(Км^2). Определите						
			температуре.	рхностное сгущение большого потенциала Гиббса при этой						
			температуре.3ависимость поверхностного сгущения энтропии от							
			температуры выраж							
			7Т^2 [Дж/(Км^2)]. Определите поверхностное сгущение							
			теплоемкости при 5							
			6. При нагр	оеве от 100 до 4	400 К поверхно	остное натя	жение			
			изменилось на 0,3 Д энтропии.	Іж/м^2. Опреде	лите поверхнос	тное сгуще	ение			
				ке привелена з	вависимость по	верхностно	οΓΟ			
			натяжения от конце				-			
			Нарисуйте схематич				оации.			
					вависимость адо		•			
			концентрации для р							
			схематически завис	имость поверхн	юстного натяже	ения раство	ора от			
			концентрации. 9. На рисун	ura Hranataranian	ны две изотерм	ит опоорбии	***			
			(параллельные лин							
			больше и почему?	,. 2 1	, ше адеороцио	III ON THE OWNER OF THE OWNER OWNER OF THE OWNER OW				
			10. На рисун		ны две изотерм		ии			
			(пересекающиеся лі		из двух случаев	з емкость				
			адсорбента больше			_				
					нгмюра для ад					
			того же газа на одно	ом и том же адс	ороенте для дв	ух температ	ryp,			
			если T(1) < T(2). 12. Нарисуйте изотерму Жуховицкого для совершенного							
				F7 326)	, ,	r				

VTI- 28 04 03 MHM 23 1 ply

раствора, если b < 1.

- 13. Нарисуйте изотерму БЭТ, если g = 1.
- 14. В разбавленном растворе присутствуют две поверхностно-активные примеси, причем b(2)/b(3) = 10, а c(2) = c(3). Какая из них сильнее адсорбируется и во сколько раз, если адсорбция подчиняется изотерме Лангмюра?
- 15. В разбавленном растворе присутствуют две поверхностно-активные примеси с одинаковой концентрацией. Какая из них адсорбируется сильнее и во сколько раз, если адсорбция подчиняется изотерме Лангмюра, а b(2)/b(3) = 0,5?
- 16. Напишите изотерму Лангмюра для адсорбции 3-го компонента в трехкомпонентном разбавленном растворе.
- 17. Нарисуйте схематически изотерму БЭТ, если теплота адсорбции равна теплоте конденсации.
- 18. Напишите уравнение изотермы Лангмюра для адсорбции второго компонента из четырехкомпонентного раствора (1 растворитель, 2,3 и 4 примеси).
- 19. При каких условиях изотерма БЭТ совпадает с изотермой Лангмюра?
- 20. Чему равно отношение доли занятых мест в четвертом слое к третьему в изотерме БЭТ, если равновесное давление пара составляет 500 Π a, а давление насыщенного пара 1000 Π a?
- 21. При каких условиях изотерма адсорбции Фаулера совпадает с изотермой Жуховицкого?
- 22. При каких условиях изотерма адсорбции Фаулера совпадает с изотермой Лангмюра?
- 23. Как определить критическую температуру расслаивания регулярного раствора?
- 24. Коэффициент активности первого компонента бинарного раствора в поверхностном слое равен 1,2. Определите, при каких значениях мольной доли этого компонента в поверхностном слое может возникнуть расслоение?
- 25. Во сколько раз отличаются активности первого компонента объемного и поверхностного растворов при 1000 K, если поверхностное натяжение раствора больше поверхностного натяжения первого компонента на 8 Дж/м^2, а емкость поверхностного слоя составляет 1Е-3 моль/м^2.
- 26. Что больше и на сколько: поверхностное натяжение раствора, рассчитанное по уравнению Шишковского или Жуховицкого, если концентрация примеси X(2) = 0.1, T = 700C, b = 5, емкость адсорбента составляет 1E-3 моль/м^2? Константы адсорбционного равновесия одинаковы.
- 27. Рассчитайте состав поверхностного слоя эквимолярного раствора (X(1)/X(2)) при 300 K, если поверхностные натяжения компонентов равны 0,02 и 0,03 Дж/м^2, соответственно, а емкость поверхностного слоя составляет 1Е-5 моль/м^2. Примите поверхностный и объемный раствор совершенными.
- 28. Мольная доля первого компонента в поверхностном слое бинарного раствора составляет 0,2. Определите, при каких значениях коэффициента активности первого компонента в поверхностном слое может возникнуть расслоение?
- 29. В регулярном растворе X(1)f = 0,3, а коэффициент активности равен 3. Определите, возможно ли расслоение раствора при температуре 1000 K?
- 30. В совершенных растворах с объемной концентрацией второго компонента X(2)=0,4 при 300 К и вдвое меньшей при 350 К концентрация второго компонента в поверхностном слое одинакова. Определите теплоту адсорбции.
- 31. В совершенных растворах с объемной концентрацией второго компонента X(2)=0,4 при 300 К и вдвое меньшей при неизвестной температуре концентрация второго компонента в поверхностном слое одинакова. Определите неизвестную температуру, если теплота адсорбции составляет -25 кДж/моль.
- 32. Совершенный раствор содержит X(2)=0,2 второго компонента. Определите поверхностное натяжение раствора, при температуре 1000 K, если емкость поверхностного слоя составляет Z=1E-5 моль/м^2, константа адсорбционного равновесия равна 10, а поверхностное натяжение чистого второго компонента составляет

TI: 28.04.03-MHM-23-1.plx ctp. 10

- $\sigma(2) = 1.5 \text{ Дж/м}^2.$
- 33. Адсорбция второго компонента составляет 10% от емкости адсорбента, а концентрация второго компонента равна X (2)=0,1. Определите константу адсорбционного равновесия при 400 К, считая адсорбцию подчиняющейся изотерме Генри.
- 34. При спрямлении изотермы в координатах $P/\Gamma = f(P)$ тангенс угла наклона прямой составил 150 м^2/г, а при спрямлении в координатах $\Gamma/P = f(\Gamma)$ составил -2,5E-5 м^2/H. Рассчитайте адсорбцию при давлении 1E4 Па.
- 35. При спрямлении изотермы Лангмюра тангенс угла наклона прямой равен -8,3E-4 м/(кгс^2). При каком давлении адсорбция составит 2,3E-5 г/м^2, если емкость адсорбента составляет 2,3E-4 г/м^2? Ответ дайте в Па.
- 36. При спрямлении изотермы Лангмюра при 300 К отсекаемый отрезок составил 2E7 м/с^2. Определите теплоту адсорбции, если константа адсорбционного равновесия при 400 К равна 5E-2 1/Па, а емкость адсорбента составляет 1E-8 кг/м^2.
- 37. При спрямлении изотермы в координатах $P/\Gamma = f(P)$ при 400 К отсекаемый отрезок составил 1 H/г, а тангенс угла наклона 7Е-3 м^2/г. Рассчитайте адсорбцию при 450 К и давлении 1000 Па, если теплота адсорбции равна -10 кДж/моль.
- 38. При спрямлении изотермы в координатах $\Gamma/P = f(\Gamma)$ при 450 К отсекаемый отрезок составил 1 г/H, а тангенс угла наклона прямой -7E-3 1/Па. Рассчитайте адсорбцию при 400 К и давлении 100 Па, если теплота адсорбции равна -10 кДж/моль.
- 39. В изотерме БЭТ b = b' = 1/3Р. Определите долю занятой поверхности.
- 40. В изотерме БЭТ b = b`. При температуре 500 К доля свободной поверхности равна 0,3, а при 800 К 0,6. Определите теплоту адсорбции, если концентрация компонента в объеме олинакова.
- 41. В изотерме адсорбции БЭТ g=0.5, а отношение равновесного давления к давлению насыщенного пара составляет P/P(0)=0.5. Определите долю свободной поверхности.
- 42. При увеличении равновесного давления с 1 кПа до 5 кПа доля свободной поверхности в изотерме БЭТ уменьшается в два раза. Определите давление насыщенного пара, если b = 2b'.
- 43. Доля свободной поверхности в изотерме БЭТ при увеличении температуры с 30 С до 40 С не изменяется при равновесном давлении 200 Па. Теплота адсорбции составляет -17,6 кДж/моль. Давление насыщенного пара адсорбата при 30оС составляет 400 Па. Определите теплоту конденсации адсорбата.
- 44. Какое предположение о границе зерна надо сделать, чтобы изотерма МакЛина-Хондроса стала изотермой Лангмюра-Жуховицкого?
- 45. Максимальная доля доступных мест X(0)b увеличивается с 0,7 до 0,9. Как изменяется концентрация атомов на границе зерна X(2)b, если концентрация атомов в объеме и константа адсорбционного равновесия не меняются?
- 46. Отношение констант адсорбционного равновесия с учетом и без учета доступных мест составляет b'/b = 0,7. Концентрация атомов в зерне составляет X(2) = 0,2, а на поверхности зерна X(2)b = 0,5. Определите константу адсорбционного равновесия.
- 47. При температуре 500 К концентрация атомов в границе зерна составила (2)b1 = 0,5, а при температуре 800 К X(2)b2 = 0,3. Концентрация атомов в объеме в обоих случаях составляет одинакова, а максимальная доля доступных мест равна 0,8. Определите теплоту адсорбции.
- 48. При концентрации атомов в зерне X(2) = 0,4 концентрация в границе составила X(2)b = 0,6, Константа адсорбционного равновесия равна 5. Определите долю доступных мест в границе зерна.
- 49. Отношение доли доступных мест в границе зерна к концентрации второго компонента в границе зерна составило 1,4. Рассчитайте величину константы адсорбционного равновесия, если концентрация второго компонента в объеме в три раза больше первого.

УП: 28.04.03-MHM-23-1.plx cтp. 11

			 50. При спрямлении изотермы адсорбции в координатах X(0) b*X(2)/X(2)b = f (X(2)) отсекаемый отрезок при 2000С равен 5, а при 3000С равен 10. Определите теплоту адсорбции. 51. Изотерма адсорбции спрямляется в координатах X(2)/X (2)b = f (X(2)). Отсекаемый отрезок равен 5, а тангенс угла наклона прямой составил -3,75. Определите максимальную долю доступных мест. 52. При концентрации атомов в зерне X(2)` = 0,4 концентрация в границе зерна составила X(2)b` = 0,5, а при X(2)`` = 0,5 X(2)b`` = 0,57. Определите долю доступных мест в границе зерна. 53. Изотерма адсорбции спрямляется в координатах X(0)b*X (2)/X(2)b = f (X(2)), и тангенс угла наклона прямой при 400 К составил -0,1. Константа адсорбционного равновесия при 500 К равна 0,1. Определите теплоту адсорбции.
5.2. Пере	чень работ, выполня	емых по дисциплине (Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)
Код работы	Название работы	Проверяемые индикаторы компетенций	Содержание работы
PI	Д3-1	УК-1-31;УК-1- В1;УК-1-У1;ОПК-4- У1;ОПК-5-У1;ПК-1-У1	Домашнее задание № 1 по разделу «Термодинамика поверхностей раздела» Домашнее задание «Определение параметров адсорбции в регулярном растворе» к учебному пособию «Физика процессов на поверхностях раздела в металлах и сплавах» выполняется студентами при изучении раздела «Термодинамика поверхностей раздела» курса «Физика поверхностей раздела в твердых телах». Цель работы: на основе исходных данных по зависимости поверхностного натяжения от состава регулярного объемного раствора и параметров объёмного раствора определить теплоту смещения в регулярном поверхностном растворе. Для того, чтобы определить теплоту смещения регулярного раствора необходимо знать зависимость активности і-компонента от состава. Активность компонента в поверхностном слое вычисляется по первому уравнению Жуховицкого, а состав поверхностного слоя — по данным о зависимости адсорбции і-компонента от состава раствора в объеме. Активность компонента в объемном регулярном растворе рассчитывается по известному значению теплоты смещения. Адсорбция первого компонента от состава раствора вычисляется с учетом выбора разделяющей поверхности таким образом, чтобы сумма адсорбций обоих компонентов бинарного раствора в адсорбционном уравнении Гиббса равнялась нулю. По рис. 1 графически определяется величина адсорбции для каждого состава, и состав поверхностного раствора. Теплоты смещения в поверхностном растворе определяется графически по зависимости кожффициента активности первого компонента в поверхностного раствора. При вычислении составов, активностей и величины адсорбции используются уравнения для объемного и поверхностного раствора. При вычислении составов, активностей и величины адсорбции используются уравнения для объемного и поверхностного раствора. При вычислении коставов, активности поверхностного натяжения раствора от концентрации второго компонента с указанием областей положительной и отрицательной адсорбции. 2. Расчет активности первого компонента в поверхностном растворе для всех составов, за исключением крайних значений. 4. График зав

	компонен	та от сос	тава повер	хностного	слоя.					
	9.	Расчет	геплоты см	иешения в	поверхнос	стном слое	·.			
	Пример в	варианта д	домашнего	задания						
	АДСОРБ:	ция в Р	ЕГУЛЯРН	OM PACT	ВОРЕ					
	Вариант .	No								
	Емкость поверхностного слоя z регулярного раствора составляет 1E-5 моль/м 2 , температура 1100 K, теплота смешения в объеме раствора $E=10~\text{кДж/моль}$. В таблице приведена зависимость поверхностного натяжения регулярного раствора от концентрации компонента в объеме:									
	X(1) 0,1 0,8	0,2 0,9	0,3 1,0	0,4	0,5	0,6	0,7			
	Сигма, Дж/м^2 0,619	0,701 0,613	0,668 0,607	0,651 0,600	0,640	0,632	0,625			
	Последов	зательнос	ть выполне	ения домаі	шнего зада	ния				
	1. раствора.		гайте актив	ность пер	вого компо	онента в об	бъеме			
	2.	Определ	пите графи ия восьми з							
	3. 4. поверхно	Рассчит	тайте конце тайте актив oe.				охности.			

P2	Д3-2	УК-1-31;УК-1-		е задание Ј						
		У1;УК-1-В1;ОПК-4		инамика по		й раздела»	•			
		-У1;ОПК-4-В1		эиантная з						
			Домашне	е задание «	кАдсорбци	я в совери	тенном рас	творе» к		
				пособию «					ела в	
				и сплавах>						
				намика по			курса «Фи	ізика		
				стей раздел			. n			
			Цель работы: рассчитать адсорбцию и поверхно совершенного раствора для двухкомпонентной							
				ного расть и атомы ст				TCMBI, CCJII	л при	
				ипонентно:				ор состоит	гиз	
				и В, а пове						
				(и объёмні						
				объемы ко						
				объема. П				мене моле	кул А	
			(2) в пове	рхностном	прастворе:	молекулам	и В(2).			
				арианта до			TDODE			
				ция в со 	вершені	ном рас	IBOPE			
			Вариант №							
			В двухкомпонентной системе А-В объемный и поверхностны растворы – совершенные, причем объемный состоит из атомо							
				охностный						
			компонентов равны и составляют половину мольного объема Адсорбция компонента В состоит в замене молекул A2 в поверхностном растворе молекулами B2 по реакции 2B + A(2)						1.	
)) — D	
				стном раст Константа						
				константа ению Аррен		и о реакци	и может ог	ыть вычис.	пспа	
				ст в поверх		лое z сове	пшенного :	раствора		
				т 20 ат/нм					и 0,1	
				льная доля						
				е чистого і						
				стный избі						
			_	стное натя	жение раст	вора в про	едположен	ии $\Gamma(A)$ +	$\Gamma(B) =$	
			0.							
			Таблица							
				і заданий и	и решения					
			% вариан		Исходны		Решения			
				X(B)	T, K	Е(адс), э	В/ат.	X(B)2	Γ(В),	
			ат/нм^2	Пов. нат.		0.4	0.000	2 76 -	0.00=	
			1	0,2	500	0,1	0,389	3,785	0,997	
			$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	0,2	500	0,2	0,867	13,33	0,892	
			4	0,1 0,1	500 500	0,2 0.3	0,562 0.929	9,243 16,58	0,958 0,832	
			5	0,1	600	0.3	0.929	16,38	0,832	
			6	0,1	600	0,3	0,804	15,08	0,883	
			7	0,2	600	0,3	0,954	18,85	0,782	
			8	0,2	600	0,2	0,750	13,74	0,903	
			9	0,2	600	0,1	0,302	2,552	1,009	
			10	0,1	600	0,1	0,079	-0,531	1,013	

	•		
Р3	Д3-3	УК-1-В1;УК-1- 31;УК-1-У1;ОПК-4	Домашнее задание № 3 к разделу «Диффузия по границам зерен» Домашнее задание «Определение параметров зернограничной
		-В1;ОПК-4-У1	диффузии» к учебному пособию «Физика процессов на
			поверхностях раздела в металлах и сплавах» выполняется
			студентами при изучении раздела «Диффузия по границам зерен»
			курса «Физика поверхностей раздела в твердых телах».
			Цель работы: на основе компьютерного эксперимента определить
			коэффициенты диффузии объемной и зернограничной диффузии
			при разных температурах и рассчитать энергии активации.
			Вариант домашнего задания выбирается из предлагаемых
			вариантов или может быть задан преподавателем для
			определенного типа образца, диффузионных характеристик
			процесса и проводимого эксперимента. В работе изучается самодиффузия из тонкого слоя сверху в
			массивный образец, представляющий собой бикристалл,
			поликристалл или тонкую пленку.
			На первом этапе производится подготовка серии образцов для их
			последующего исследования методом
			микрорентгеноспектрального анализа (МРСА). Для подготовки
			образцов необходимо запустить программу GBDsamples.exe. Для
			задания номера варианта в правой части открывшегося окна нужно
			отметить «By code» и в появившемся поле «Code» ввести номер.
			Если параметры диффузии и вид образца задаются вручную, то
			используется окно «Manual», а в меню «Parameters» вводятся
			исходные данные.
			После введения первичных данных, тип используемого образца
			появится в левой части окна, а информация об условиях
			эксперимента (интервал температур и максимальное время отжига)
			– в правой. Для проведения отжига необходимо задать температуру и время и нажать «Heating». Процесс нагрева можно прервать в
			и время и нажать «ricating». процесс нагрева можно прервать в любой момент нажатием «Stop» и после продолжить.
			Распределение диффузанта в образце во время отжига
			демонстрируется в левой части окна программы. По завершении
			отжига данные отжига образца необходимо сохранить, нажав
			«Samples»→ «Save sample». Для проверки воспроизводимости
			получаемых экспериментальных результатов необходимо провести
			эксперимент при разных временах отжига. Все образцы,
			приготовленные на первом этапе, сохраняются для анализа.
			На втором этапе производится анализ приготовленных на первом
			этапе образцов методом МРСА. Для анализа необходимо запустить
			программу GBDanalysis.exe. Для загрузки приготовленных
			образцов выбирают «File»→ «Load sample» и указывают имя
			файла. После запуска появляется окно, в левой части которого
			находится изображение образца для исследования. Область анализа указана квадратом, расположенным на профиле
			образца. Измерение концентрации проводится вдоль линии,
			расположенной в центре анализируемой области. Сдвиг квадрата
			осуществляется стрелками, расположенными в нижней левой части
			окна. Размеры квадрата можно менять, используя стрелки
			«влево/вправо» под окном. Чем больше область анализа, тем
			больше статистика измерений и, следовательно, меньше случайная
			ошибка. Однако, при низких температурах отжига диффузионные
			пути небольшие, что заставляет уменьшать зону анализа.
			Отображение анализируемой области с распределением
			диффузанта достигается нажатием «Show map» в правой нижней
			части окна.
			Также можно корректировать размер линии сканирования
			нажатием стрелок в верхней правой части окна. При нажатии на
			«Scan» в левом окне отображаются результаты сканирования. Измерения концентрации на каждом образце проводят как на
			границе зерна, так и вдали от границы с целью определения
			границе зерна, так и вдали от границы с целью определения коэффициента объемной диффузии, необходимого при вычислении
			коэффициента ооъемнои диффузии, неооходимого при вычислении коэффициента зернограничной диффузии.
			Результат сканирования отображается в левой части окна в виде
			графика. Программа предлагает следующий возможный выбор
			координат: по оси ординат – lnC (натуральный логарифм
			измеренной концентрации), по оси абсцисс – х (координатная ось,
			параллельная поверхности образца), у (координатная ось,
L			1 1

перпендикулярная поверхности образца), у6/5, у2. В зависимости от типа образца и задач измерений студент выбирает координаты спрямления: lnC у2 при определении коэффициента объемной диффузии, lnC у или lnC у6/5 при определении коэффициента зернограничной диффузии. Результатом измерения концентрации вещества по глубине является тангенс угла наклона прямой, полученной в координатах спрямления, который выводится в окне программы.

По завершении процедуры сканирования результаты сохраняются нажатием «File»→«Save scan data». При этом происходит запись результатов сканирования в файл с расширением «dat», который впоследствии можно обработать в различных программах для корректировки результатов.

Отчет о домашнем задании должен содержать

- 1. Описание каждого образца, включая выбор температур и времен отжига; вид образца до отжига и после.
- 2. Параметры измерения концентрации, включая размеры и позицию области сканирования.
- 3. Объяснение выбора координат спрямления.
- 4. Порядок определения и значения коэффициентов объемной и зернограничной диффузии для каждого измерения.
- 5. Концентрационные профили в координатах спрямления.
- 6. Зависимости lnD от 1/T и lnD(b) от 1/T.
- 7. Рассчитанные значения предэкспоненциального множителя и энергии активации объемной и зернограничной диффузии.
- 8. Обсуждение воспроизводимости результатов.
- 9. Определение кинетических режимов отжигов.
- 10. Выводы.

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

- 1. На какой глубине от поверхности лучше изучать слоевую активность при самодиффузии в режиме "В" (по Харрисону)?
- 2. Почему решение Фишера для зернограничной диффузии называют квазистационарным?
- 3. Нарисуйте, как зависит от времени отжига концентрация в границе зерна, в двух точках на разном расстоянии от поверхности в модели Фишера?
- 4. Нарисуйте на одном графике как тройное произведение (Р) и коэффициент зернограничной диффузии зависят от температуры отжига?
- 5. Нарисуйте, как изменяется концентрация диффундирующего вещества по линии, перпендикулярной границе зерна, в моделях Фишера и Гиббса?
- 6. Как зависит от времени отжига угол в вершине изоконцентрационного профиля?
- 7. Как зависит от температуры отжига фишеровская длина при самодиффузии?
- 8. Что надо сделать, чтобы гарантированно попасть в режим "А" (по Харрисону): увеличить температуру и время отжига или уменьшить?
- 9. Как зависит температура отжига для перехода из режима "В" в режим "А" (по Харрисону) при самодиффузии от температуры плавления материала при постоянных размерах зерна и времени?
- 10. Когда лучше выполняется условие для режима "В" (по Харрисону) альфа >> 1: при повышении температуры отжига или понижении и почему?
- 11. Как сегрегация влияет на температуру отжига для перехода из режима "В" в режим "С" (по Харрисону)?
- 12. От чего и как зависит температура отжига для перехода из режима "В" в режим "А" (по Харрсиону) при самодиффузии?
- 13. Какой гофр сглаживается быстрее: частый или редкий?
- 14. Чем по внешнему виду отличается канавки жидкометаллического и термического травления?
- 15. Почему при прочих равных условиях канавка жидкометаллического травления глубже канавки термического травления?
- 16. Почему глубина канавки жидкометаллического травления слабо зависит от температуры?
- 17. Понижение температуры при сглаживании поверхностного гофра способствует преобладанию механизма поверхностной или объемной диффузии? Почему?
- 18. Для зернограничной диффузии меди в никеле при температуре отжига 900 К в течение суток фишеровская длина составила 54 мкм. Определите фишеровскую длину при температуре отжига 800 К за 12 часов. Примите s=1, E(b)=0.6E. Воспользуйтесь эмпирическими правилами для самодиффузии никеля (T(пл)=1726 K).
- 19. Для зернограничной диффузии никеля в меди при температуре отжига 1000 К фишеровская длина составила 19 мкм. Определите время отжига, если энергия активации диффузии в объеме больше энергии активации зернограничной диффузии в 1,6 раза. Примите s = 1, дельта = 1 нм. Воспользуйтесь эмпирическими правилами для самодиффузии меди (Т (пл) = 1356 K).
- 20. Для зернограничной диффузии меди в алюминии при температуре отжига 300 К в течение 4-х суток слоевая активность на глубине 35 мкм составила 1,8Е2 имп/(мин см^2), а при 400 К при тех же остальных параметрах 1,2Е5 имп/ (мин см^2). Определите энергию активации диффузии меди в алюминии, если при отжиге при 300 К фишеровская длина

TI: 28.04.03-MHM-23-1.plx ctp. 16

составила 50 мкм, а при 400 К 90 мкм.

- 21. Углы в вершине изоконцентрационного профиля, образующиеся при зернограничной диффузии алюминия в меди при температуре отжига 400 К в течение 110 часов и при температуре 410 К в течение 10 часов равны. Определите энергию активации зернограничной диффузии. Примите s = 1. Воспользуйтесь эмпирическими правилами для самодиффузии меди (Т(пл) = 1356 K).
- 22. Угол в вершине изоконцентрационного профиля, образующийся при зернограничной диффузии магния в алюминии при температуре отжига 700 К в течение 100 часов равен 15о. Во сколько раз отличаются энергии активации диффузии в объеме и зернограничной диффузии? Примите s=1, дельта =1 нм. Воспользуйтесь эмпирическими правилами для самодиффузии алюминия (T(пл) = 933 K).
- 23. Во сколько раз отличаются фишеровский путь диффузии и путь диффузии в объеме при самодиффузии (за 10 часов) при 0,7Т(пл)? Воспользуйтесь эмпирическими правилами для самодиффузии Примите дельта = 1 нм.
- 24. Определите время диффузии серебра при 200 С по границе зерна меди толщиной 0,5 нм при отсутствии сегрегации, если фишеровская длина составила 10 мкм. Примите для зернограничной диффузии серебра в меди D(0)b = 0.015 см 2 /с и E(b) = 80 кДж/моль, а для объемной -D(0) = 0.2 см 2 /с и E(b) = 80 кДж/моль.
- 25. Определите энергию активации зернограничной диффузии цинка в алюминии при отсутствии сегрегации, если после отжига в течение 200 часов при 225 С фишеровская длина составила 113 мкм, а за 75 часов при 325 С 68 мкм. Примите для диффузии цинка в алюминии D(0) = 1.4 см $^{\circ}2$ /с, а E = 128.7 кДж/моль.
- 26. Угол в вершине изоконцентрационного профиля зернограничной диффузии цинка в алюминии составил 85 градусов после отжига при 300 С за 100 часов. Приняв сегрегацию равной 10, а толщину границы 1 нм, определите коэффициент зернограничной диффузии. В каком режиме (по Харрисону) протекает процесс? Примите для диффузии цинка в алюминии $D(0) = 1.4 \text{ см}^2/\text{c}$, а E = 128.7 кДж/моль.
- 27. При исследовании диффузии никеля по границам зерен меди толщиной 0,5 нм после отжига в течение 20 часов при 700 С обнаружена линейная зависимость логарифма слоевой активности от глубины с углом наклона 0,05 1/мкм. Определите коэффициент зернограничной диффузии никеля в меди. Примите для диффузии никеля в меди D(0) = 3,8 см^2/c, а E = 237,4 кДж/моль.
- 28. Определите отношение слоевых активностей цинка (T(пл) = 420 C) на глубине 20 и 40 мкм при диффузии цинка в алюминии при 300 C в течение 100 часов при толщине границы 0,5 нм. Как изменится это отношение, если учесть коэффициент сегрегации, равный 10? Примите для диффузии цинка в алюминии D(0) = 1,4 см 2 c, а E = 128,7 кДж/моль. Для оценок D(b) воспользуйтесь эмпирическими правилами.
- 29. Как изменится концентрация компонента в границе зерна на глубине 5 мкм, если при фишеровской длине 20 мкм коэффициент сегрегации увеличится в 100 раз?
- 30. Фишеровская длина при гетеродиффузии не зависит от температуры. Во сколько раз отличаются абсолютные значения энергии активации диффузии и теплоты сегрегации, если E(b) = 0.6E?
- 31. Фишеровская длина при зернограничной диффузии составляет L мкм за 100 часов отжига при температуре 0,4T (пл). При какой температуре отжига (в долях Т(пл) в течение 10 часов фишеровская длина останется неизменной, если теплота сегрегации в девять раз меньше энергии активации диффузии. Воспользуйтесь эмпирическими правилами для самодиффузии. Примите E(b) = 0,5E?
- 32. Фишеровские пути при зернограничной диффузии равны при отжиге при температуре 400 K в течение 10 часов и при 450 K в течение 100 часов. Определите теплоту сегрегации. Примите E(b) = 0,5E? Воспользуйтесь эмпирическими правилами.
- 33. Какой температуре диффузионного отжига (в долях Т(пл)) соответствует условие Харрисона для перехода между режимами "В" и "С" при самодиффузии в течение 100 часов? Примите дельта = 1 нм. Воспользуйтесь эмпирическими правилами для самодиффузии.
- 34. Условие Харрисона для перехода между режимами "В" и "С" при самодиффузии соответствует температуре 0,4Т (пл). Чему будет равна температура перехода между этими режимами, если увеличить время отжига в 20 раз? Воспользуйтесь эмпирическими правилами для самодиффузии.
- 35. Какой температуре диффузионного отжига при (в долях Т(пл)) соответствует условие Харрисона для перехода между режимами "В" и "А" при самодиффузии в течение 1 часа? Примите размер зерна 10 мкм. Воспользуйтесь эмпирическими правилами для самодиффузии.
- 36. Какому режиму диффузионного отжига (по Харрисону) соответствуют следующие параметры эксперимента: время отжига 100 часов, T = 0.5T(пл)? Примите s = 1, дельта = 1 нм, E(b) = 0.5E. Воспользуйтесь эмпирическими правилами для самодиффузии.
- 37. Условие Харрисона для перехода между режимами "В" и "А" при самодиффузии соответствует температуре 0,8Т (пл). Чему будет равна температура перехода, если увеличить время отжига в 3 раза? Воспользуйтесь эмпирическими правилами для самодиффузии.
- 38. Какой температуре соответствует условие Харрисона для перехода между режимами "В" и "С" при самодиффузии меди в течение 100 часов? Примите толщину границы 1 нм. Температура плавления меди составляет 1356 К. Воспользуйтесь эмпирическими правилами для самодиффузии.
- 39. Во сколько раз отличаются фишеровская длина и путь диффузии в объеме при самодиффузии (за 10 часов) при $0.7T(\pi\pi)$? Примите $\delta=1$ нм
- 40. Какой температуре соответствует условие Харрисона для перехода между режимами "В" и "А", при самодиффузии меди в течение 1 часа? Примите размер зерна 10 мкм.
- 41. Высота поверхностного гофра уменьшилась в 15 раз за 2 часа. Определите длину волны поверхностного гофра. Примите коэффициент $B = 1E-28 \text{ m}^4/c$.
- 42. Рассчитайте величину поверхностной концентрации атомов меди, если коэффициент С больше коэффициента В в 250 раз при 700оС, используя эмпирические правила для самодиффузии. Для меди T(пл) = 1356 K, M = 63,5 г/моль, плотность = 8,9 г/см^3. Примите E(s) = 1/3E.
- 43. Отношение поверхностного и объемного коэффициентов диффузии при температурах 1200 С и 1300 С

TI: 28.04.03-MHM-23-1.plx ctd, 17

отличаются в "e" раз. Определите температуру плавления металла, используя эмпирические правила для самодиффузии. Примите E(s) = 1/3E.

- 44. Как изменится высота поверхностного гофра с длиной волны 20 мкм при нагреве в течение 2 часов, если уменьшить температуру с 0.7T(пл) до 0.6T(пл)? Примите разность коэффициентов B(1) (при 0.7T(пл)) и B(2) (при 0.6T(пл)) равной 5E-27 м 4 /с.
- 45. Длина волны поверхностного гофра составляет 5 мкм. Что преобладает: поверхностная диффузия или объемная, если коэффициенты В и С равны 1E-28 м⁴/с и 1E-21 м³/с, соответственно?
- 46. Пользуясь эмпирическими правилами, определите, какой из механизмов сглаживания синусоидального гофра с длиной волны 30 мкм на поверхности чистой меди (Т(пл) = 1083 С) преобладает при 0,7Т(пл) и толщине границы 1 нм?
- 47. Глубина канавки жидкометаллического травления в течение 1 часа составила 0,1 мкм. Какое потребуется время травления для увеличения глубины канавки в 2 раза?
- 48. Как изменится глубина канавки жидкометаллического травления для меди, если увеличить время травления в 8 раз?
- 49. Канавка термического травления образуется после 16 часов отжига. Сколько времени потребуется на отжиг, чтобы глубина канавки уменьшилась в два раза, если действует механизм поверхностной диффузии?
- 50. Канавка термического травления образуется после 16 часов отжига. Сколько времени потребуется на отжиг, чтобы глубина канавки уменьшилась в два раза, если действует механизм объемной диффузии?
- 51. Глубина канавки термического травления в течение 1 часа для меди составила 0,25 мкм. Определите глубину канавки, если увеличить время травления до 2 часов.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Оценка «отлично» - обучающийся показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно применяет полученные знания на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литера-туру. Оценка «хорошо» - обучающийся показывает твердые и достаточно полные зна-ния в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, четко излагает материал.

Оценка «удовлетворительно» - обучающийся показывает знания в объеме прой-денной программы, ответы излагает хотя и с ошибками, но уверенно исправляет их после дополнительных и наводящих вопросов.

Оценка «неудовлетворительно» - обучающийся допускает грубые ошибки в от-вете, не понимает сущности излагаемого вопроса, не умеет применять знания для решения простых задач, дает неполные ответы на дополнительные и наводящие вопросы.

Оценка «неявка» – обучающийся на экзамен не явился.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ						
	6.1. Рекомендуемая литература					
6.1.1. Основная литература						
	Авторы, составители	Заглавие	Библиотека	Издательство, год		
Л1.1	Бокштейн Б. С.	Диффузия в металлах: учеб. пособие для студ. вузов по спец Физика металлов	Библиотека МИСиС	М.: Металлургия, 1978		
Л1.2	Бокштейн Б. С., Менделев М. И., Похвиснев Ю. В.	Физическая химия: термодинамика и кинетика: учебник	Электронная библиотека	М.: Изд-во МИСиС, 2012		
Л1.3	Бокштейн Б. С., Ярославцев А. Б.	Диффузия атомов и ионов в твердых телах	Библиотека МИСиС	М.: Изд-во МИСиС, 2005		
6.1.2. Дополнительная литература						
	Авторы, составители	Заглавие	Библиотека	Издательство, год		
Л2.1	Бокштейн Б. С., Клингер Л. М.	Физическая химия металлургических процессов. Теория сплавов. Разд.: Теория внутренних поверхностей раздела в металлах и сплавах: Учеб. пособие для студ. спец. 0406, 0407	Библиотека МИСиС	М.: Учеба, 1984		
6.1.3. Методические разработки						
	Авторы, составители	Заглавие	Библиотека	Издательство, год		
Л3.1	Бокштейн С. 3.	Диффузия и структура металлов	Библиотека МИСиС	М.: Металлургия, 1973		
<u> </u>	6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»					

/TI: 28.04.03-MHM-23-1.plx ctp. 18

Э1	- Федеральный портал «Российское образование»	: http://edu.ru			
Э2	- Открытое образование	http://openedu.ru;			
Э3	- Российская государственная библиотека	http://www.rsl.ru			
Э4	Физика поверхностей раздела в твердых телах	(https://lms.misis.ru/ebooks/physical-chemistry/index.html			
Э5	Физика поверхностей раздела в твердых телах	https://lms.misis.ru/courses/2157/modules/items/131381			
	6.3 Перечень программного обеспечения				
П.1	Физическая химия				
П.2	Зернограничная диффузия				
П.3	Лицензии ПО Windows Server CAL ALNG LicSAPk MVL DvcCAL, ПО WinEDUA3 ALNG SubsVL MVL PerUsr и PerUsr				
П.4	ESET NOD32 Antivirus				
П.5	Win Pro 10 32-bit/64-bit				
	6.4. Перечень информационных справочных систем и профессиональных баз данных				
И.1	— Научная электронная библиотека eLIBRARY https://elibrary.ru/				
И.2	— Полнотекстовые деловые публикации информагентств и прессы по 53 отраслям https://polpred.com/news				
И.3	Иностранные базы данных (доступ с ІР адресов МИСиС):				

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ					
Ауд.	Назначение	Оснащение			
Читальный зал №3 (Б)		комплект учебной мебели на 44 места для обучающихся, МФУ Хегох VersaLink B7025 с функцией масштабирования текстов и изображений, 8 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.			
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:	комплект учебной мебели до 36 мест для обучающихся, мультимедийное оборудование, магнитно-маркерная доска, рабочее место преподавателя, ПКс доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus			
A-323a	Аудитория для самостоятельной работы	комплект учебной мебелипакет на 6 рабочих мест с компьютерами, принтер, лицензионных программ MS Office			

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

Самостоятельная работа обучающихся направлена на углубленное изучение тем дисциплины и предполагает изучение основных и дополнительных источников учебной и научной литературы, подготовку докладов, рефератов, эссе, выполнение курсовых работ и проектов. Материалы докладов, курсовых работ (проектов) в дальнейшем могут быть использованы при выполнении студенческих научных исследований и стать основой для выступления на студенческих научно-практических конференциях, конкурсах студенческих работ.

Самостоятельная работа включает следующие виды деятельности:

- работа с лекционным материалом, предусматривающая проработку конспекта лекций и учебной литературы;
- поиск (подбор) и обзор научной и учебной литературы, электронных источников информации по изучаемой теме дисциплины, написание доклада, выполнение индивидуальных и групповых заданий;
- освоение материала, предусмотренного для самостоятельного изучения;
- подготовка к практическим и семинарским занятиям;
- подготовка к зачету;
- методические указания по выполнению индивидуального задания «Диффузия в границах зерен»;

Дисциплина относится к точным наукам и требует значительного объема самостоятельной работы. Отдельные учебные вопросы выносятся на самостоятельную проработку и контролируются посредством текущей аттестации. При этом организуются групповые и индивидуальные консультации. Качественное освоение дисциплины возможно только при систематической самостоятельной работе, что поддерживается системой текущей и рубежной аттестации.