Документ полтисан простой алектронной полтиской и ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Прорект **Редеральное государственн** ое автономное образовательное учреждение Дата подписания: 12.05.2023 17:25:07 высшего образования

Уникальный простажный исследовательский технологический университет «МИСИС»

d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Физика полупроводниковых приборов

Закреплена за подразделением

Кафедра ППЭ и ФПП

Направление подготовки

22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ

Профиль

 Форма обучения
 очная

 Общая трудоемкость
 3 ЗЕТ

Часов по учебному плану 108 Формы контроля в семестрах:

в том числе: зачет с оценкой 7

 аудиторные занятия
 51

 самостоятельная работа
 57

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	7 (4.1)		Итого	
Недель	1	8		
Вид занятий	УП	УП РП		РΠ
Лекции	17	17	17	17
Практические	34	34	34	34
Итого ауд.	51	51	51	51
Контактная работа	51	51	51	51
Сам. работа	57	57	57	57
Итого	108	108	108	108

Программу составил(и):

ст.преп., Черных Сергей Владимирович

Рабочая программа

Физика полупроводниковых приборов

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - бакалавриат Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ (приказ от 02.04.2015 г. № 119 о.в.)

Составлена на основании учебного плана:

22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ, 22.03.01-БМТМ-22.plx , утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.09.2022, протокол № 8-22

Утверждена в составе ОПОП ВО:

22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ, , утвержденной Ученым советом НИТУ МИСИС 22.09.2022, протокол № 8-22

Рабочая программа одобрена на заседании

Кафедра ППЭ и ФПП

Протокол от 21.06.2022 г., №11

Руководитель подразделения Диденко Сергей Иванович

1. ЦЕЛИ ОСВОЕНИЯ

1.1 Дать обучающимся представление о типах полупроводниковых приборов, физических основах работы, их характеристиках и методах подбора материалов для обеспечения оптимальных характеристик приборов.

	2. M	ЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
	Блок ОП:	Б1.В.ДВ.17						
2.1		рительной подготовке обучающегося:						
2.1.1		Диффузия и диффузионно-контролируемые процессы						
2.1.2	Материаловедение							
2.1.3	-	упроводников и диэлектриков						
2.1.3	Металловедение иннов							
		•						
2.1.5	Методы исследования							
2.1.6		изация цифровых технологий в материаловедении и металлургии						
2.1.7		жие измерения функциональных материалов						
2.1.8	= =	зация и технические измерения						
2.1.9	= =	зация и технические измерения в электронике						
2.1.10		ния и методов исследования материалов						
2.1.11	-	стика по получению профессиональных умений и опыта профессиональной деятельности						
2.1.12	_	стика по получению профессиональных умений и опыта профессиональной деятельности						
2.1.13		стика по получению профессиональных умений и опыта профессиональной деятельности						
2.1.14		стика по получению профессиональных умений и опыта профессиональной деятельности						
2.1.15	Разработка новых мате	риалов						
2.1.16	Технология функциона	льных материалов						
2.1.17	Фазовые равновесия и ,	дефекты структуры						
2.1.18	Физика диэлектриков							
2.1.19	Физика полупроводник	COB						
2.1.20	Введение в квантовую	теорию твердого тела						
2.1.21	Дефекты кристалличес	кой решетки						
2.1.22	Компьютеризация эксп	еримента						
2.1.23	Планирование и органи	изация научно-исследовательской работы						
2.1.24	Планирование научног	о эксперимента						
2.1.25	Теория поверхностных	явлений						
2.1.26	Теория симметрии							
2.1.27	Электроника							
2.1.28	Кристаллография							
2.1.29	Практическая кристалл	ография						
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как						
	предшествующее:							
2.2.1	Атомная и электронная	структура поверхности и межфазных границ						
2.2.2	Высокотемпературные							
2.2.3	Композиционные и кер	амические материалы						
2.2.4	Композиционные материалы							
2.2.5	Компьютерное моделирование материалов и процессов							
2.2.6	Компьютерное моделирование процессов получения материалов							
2.2.7	Математические методы моделирования физических процессов							
2.2.8	Металловедение сварки							
2.2.9	Методы исследования структур и материалов. Часть 2							
2.2.10	Объемные наноматериалы							
2.2.11	Поверхностное модифицирование материалов и защитные покрытия							
2.2.12		е защиты и защита выпускной квалификационной работы						
2.2.12		е защиты и защита выпускной квалификационной работы						
2.2.13		е защиты и защита выпускной квалификационной работы						
2.2.14		е защиты и защита выпускной квалификационной работы е защиты и защита выпускной квалификационной работы						
2.2.13	тюдготовка к процедур	с защиты и защита выпускной квалификационной расоты						

2.2.16	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.17	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.18	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.19	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.20	Специальные сплавы
2.2.21	Структура и свойства функциональных наноматериалов
2.2.22	Физическое материаловедение сплавов с особыми магнитными свойствами, часть 2. Магнитно-твердые сплавы
2.2.23	Функциональные материалы электроники
2.2.24	Экстремальные технологии получения наноматериалов

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ПК-1: Способен осуществлять обработку и анализ научно-технической информации и результатов исследований

Знать

- ПК-1-33 Методы исследования полупроводниковых структур и приборов различного назначения
- ПК-1-34 Методы вычисления параметров полупроводникового материала из характеристик полупроводниковых устройств
- ПК-1-31 Физические основы работы полупроводниковых приборов и принципы выбора материалов для их создания
- ПК-1-32 Свойства полупроводниковых материалов, определяющие характеристики электронных приборов на их основе

Уметь:

- ПК-1-УЗ Осуществлять анализ научно-технической информации в области современных полупроводниковых материалов и приборов на их основе
- ПК-1-У2 Вычислять параметры полупроводниковых материалов из характеристик полупроводниковых структур и приборов
- ПК-1-У1 Строить зонные диаграммы полупроводниковых структур и устройств

Владеть:

ПК-1-В1 Методами расчета параметров полупроводниковых структур и приборов на их основе

	4. СТРУКТУРА И СОДЕРЖАНИЕ							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Введение. Типы полупроводниковых приборов							
1.1	Самостоятельное изучение типов и классификации полупроводниковых приборов. Подготовка к лекционному занятию. /Ср/	7	5	ПК-1-31 ПК-1- У3	Л1.1 Э1 Э2 Э3 Э4 Э5 Э6 Э7			
1.2	Классификация полупроводниковых приборов. Основные полупроводниковые материалы, используемые для их создания. /Лек/	7	2	ПК-1-31 ПК-1- 32	Л1.1Л3.1 Л3.2 Л3.3 Э1 Э2 Э3 Э4 Э5 Э6 Э7			
	Раздел 2. Однопереходные полупроводниковые приборы							
2.1	Энергетическая диаграмма р-п перехода. Уравнение Пуассона для описания распределения поля в р-переходе. Емкость р-п перехода. ВАХ идеального и реального р-п перехода /Лек/	7	2	ПК-1-31 ПК-1- 32	Л1.1Л2.11Л3			

	T 201			HIC 1 D1 HIC 1	H1 1 H2 2 H2	ı		
2.2	Практическое занятие №1 "Расчет параметров полупроводниковых диодов. Вычисление основных параметров р-п перехода и полупроводника из экспериментальных ВАХ и ВФХ диодов на основе различных материалов" /Пр/	7	4	ПК-1-31 ПК-1- 32 ПК-1-33 ПК-1-34 ПК-1- У2 ПК-1-В1	Л1.1Л3.3Л3. 1 Э1			
2.3	Диоды Шоттки. СВЧ диоды: туннельный диоды, диоды Ганна, лавинно-пролетные диоды. Выбор материала, связь параметров материала с характеристиками прибора. /Лек/	7	3	ПК-1-31 ПК-1- 32	Л1.1Л2.1 Л2.8Л3.3 Э1 Э4 Э5 Э6 Э7			
2.4	Практическое занятие №2 "Расчет зонной диаграммы барьера Шоттки. Расчет вольт-амперной характеристики. Вычисление основных параметров р-п перехода из экспериментальных ВАХ и ВФХ" /Пр/	7	3	ПК-1-31 ПК-1- 32 ПК-1-34 ПК-1-У1 ПК-1 -У2 ПК-1-В1	Л1.1			
2.5	Практическое занятие №3 "Энергетические диаграммы гетероструктур" /Пр/	7	4	ПК-1-31 ПК-1- У1	Л1.1 Л1.2Л2.6 Л2.9 Л2.12 Э1			
2.6	Подготовка к контрольной работе №1 «Расчет параметров р-перехода и полупроводникового диода на его основе» /Ср/	7	4	ПК-1-31 ПК-1- У2 ПК-1-В1	лз.з Э1 Э2			
	Раздел 3. Многопереходные полупроводниковые приборы							
3.1	Биполярные транзисторы. Конструкции, материалы и технологии создания. Принцип работы. Схемы включения. Режимы работы. /Лек/	7	4	ПК-1-31 ПК-1- 32	Л1.1Л2.11Л3 .1 Э1 Э2 Э3 Э4 Э5 Э6 Э7			
3.2	Практическое занятие №4 "Коэффициент инжекции, коэффициент переноса, коэффициент рекомбинации в эмиттерном переходе. Распределение неосновных носителей в биполярном транзисторе. Входные и выходные ВАХ." /Пр/	7	2	ПК-1-31 ПК-1-32	Л1.1Л2.11Л3 .1 Л3.2 Л3.3 Э1		KM1	
3.3	Практическое занятие №5 "Расчет основных параметров и коэффициентов усиления биполярных транзисторов на основе различных материалов с учетом эффектов неидеальности. Расчет выходных ВАХ" /Пр/	7	2	ПК-1-31 ПК-1- 32 ПК-1-В1	Л1.1Л2.11Л3 .1 Л3.2 Л3.3 Э1			

3.4	Выполнение домашней работы №1 «Расчёт характеристик биполярного транзистора» /Ср/	7	18	ПК-1-31 ПК-1- 32 ПК-1-У1 ПК-1-В1	Л1.1Л2.11Л3 .1 Л3.2 Л3.3 Э1 Э2		
3.5	Практическое занятие №6 "Энергетические диаграммы гетеробиполярных транзисторов на основе различных полупроводниковых материалов (GaAs, GaN, SiGe). Схемы включения." /Пр/	7	4	ПК-1-31 ПК-1- 32 ПК-1-У1	Л1.1Л2.11Л3 .1 Л3.2 Л3.3 Э1		
3.6	Подготовка к контрольной работе №2 «Расчет параметров биполярного тразистора» /Ср/	7	4	ПК-1-31 ПК-1- 32 ПК-1-В1	Л1.1Л3.3		
3.7	Тиристоры. Типы, конструкции, материалы и технология создания. /Лек/	7	2	ПК-1-31 ПК-1- 32	Л1.1Л3.1 Э1 Э2 Э3 Э4 Э5 Э6 Э7		
3.8	Самостоятельное изучение классификации и конструкций тиристоров /Ср/	7	4	ПК-1-31 ПК-1- 32 ПК-1-У3	Л1.1 Э1 Э2 Э3 Э4 Э5 Э6 Э7		
3.9	Практическое занятие №7 "Расчет вольт-амперных характеристик тиристоров" /Пр/	7	4	ПК-1-31 ПК-1- 32 ПК-1-В1	Л1.1Л3.3		
	Раздел 4. МДП структуры. Полевые транзисторы						
4.1	Конструкция и принцип работы МДП- транзисторов. Основные параметры. /Лек/	7	2	ПК-1-31 ПК-1- 32	Л1.1Л1.1 Л2.10 Э1		
4.2	Полевые транзисторы с затвором в виде p-n перехода и барьера Шоттки на кремнии и арсениде галлия /Лек/	7	2	ПК-1-31 ПК-1- 32	Л1.1Л2.7 Л2.10 Э1		
4.3	Практическое занятие №8 "Расчет идеальных и реальных вольт-фарадных характеристик МДП структуры. Измерение ВФХ МДП. Вычисление параметров диэлеэктрика, полупроводника и границы раздела из ВФХ" /Пр/	7	4	ПК-1-31 ПК-1- 32 ПК-1-34 ПК-1-У2	л1.1л2.3 л2.5 Э1 Э2 Э6 Э7		
4.4	Практическое занятие №9 "Расчет ВАХ и рабочих параметров полевых транзисторов на кремнии и арсениде галлия" /Пр/	7	3	ПК-1-31 ПК-1- 32 ПК-1-В1	Л1.1Л2.10 Э1		
4.5	Подготовка к контрольной работе №3 «Расчет параметров полевых транзисторов» /Ср/	7	4	ПК-1-31 ПК-1- 32 ПК-1-В1	Л1.1Л2.4 Л2.5 Л2.10 Э1		
4.6	Выполнение домашней работы №2 «Расчёт характеристик МДП-транзистора» /Ср/	7	18	ПК-1-31 ПК-1- 32 ПК-1-У1 ПК-1-В1	Л1.1Л2.10 Э1		

4.7	Практическое занятие №10	7	4	ПК-1-31 ПК-1-	Л1.1Л2.3	KM1	
	"Построение зонной			У1	Л2.5		
	диаграммы реальной МДП						
	структуры с учетом						
	различных типов						
	поверхностных состояний и						
	заряда, встроенного в						
	диэлектрике." /Пр/						

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ						
	5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки						
Код КМ	Контрольное мероприятие	Проверяемые индикаторы компетенций	Вопросы для подготовки				
KM1	Перечень вопросов для подготовки к практическим занятиям	ПК-1-31;ПК-1-32;ПК-1-34;ПК-1-У3	 Классификация полупроводниковых приборов. Области применения. Современные полупроводниковые материалы. р-п переход при равновесии. Контактная разность потенциалов. Как зависит контактная разность потенциалов от характеристик материалов? Методы получения р-п перехода: диффузи, ионная имплантация, эпитаксия. Уравнение Пуассона для резкого перехода. Распределение объемного заряда, поля и потенциала в р-п переходе. Барьерная емкость р-п перехода. Несимметричный р-п переход. ВФХ р-п перехода. Методы вычисления параметров прибора и полупроводникового материала из ВФХ. Лавинный пробой р-п перехода. Туннельный пробой р-п перехода. Уравнение Пуассона для линейного перехода. Распределение объемного заряда, поля и потенциала в р-п переходе. Идеальная ВАХ диода Туннельный диод: конструкция, принцип работы, основные параметры, области применения. Диод Ганна: конструкция, принцип работы, основные параметры, основные материалы и области применения. Лавинно-пролетный диод: материалы, конструкция, принцип работы, основные параметры, области применения. Биполярный транзистор. Конструкция. Принцип работы. Схемы включения биполярного транзистора. Входные и выходные ВАХ биполярного транзистора по схеме с общей базой, с общим эмиттером, с общим коллектором. Гетеробиполярный транзистор. Тиристоры: типы, принцип работы. Материалы и конструкции. Водные и выходные в АХ биполярного транзистором и барьером Шоттки ВАХ полевых транзисторов с управляющим р-п переходом и барьером Шоттки. Напряжение отсечки полевых транзисторов с управляющим р-п переходом и барьером Шоттки. Напряжение отсечки полевые транзисторов с барьером Шоттки, работающие в режиме обогащения. 				

KM2	Контрольная	ПК-1-31;ПК-1-	Примеры задач (в варианте 2 задачи):
	работа 1 «Расчет	В1;ПК-1-У2	1. Электронно-дырочный переход сформирован вплавлением
	параметров р-		алюминия в кремний n-типа с концентрацией доноров ND=1e15cм-
	перехода и		3. Концентрацию акцепторов в рекристаллизованной области
	полупроводниковог		принять равной 1е19 см-3. Построить зонную диаграмму р-п
	о диода на его		перехода при обратном смещении 5 В, рассчитать общую ширину
	основе»		пространственного заряда и соотношение между областями
			пространственного заряда соответсвующих областей при заданном
			смещении.
			2. Равновесная ширина несимметричного р-п перехода, созданного
			в германии, составляет величину 0,5 мкм, а контактный потенциал
			равен 0,3 В. Найти концентрацию примеси в слабо- и
			сильнолегированной областях.
			3. Во сколько раз изменится величина контактного потенциала в
			ассиметричном р-п переходе, изготовленном из кремния, если а)
			уровень легирования п- и р-областей увеличить в 3 раза; б) уровень
			легирования n- и p-областей увеличить на 3 порядка.
			4. Электронно-дырочный переход создавали ионной имплантацией
			фосфора в кремниевую пластину марки ЭКДБ-0.5, доза
			имплантации составляла величину 5е13 см-2. Чему равно значение
			контактного потенциала, если принять, что распределение
			имплантированных ионов аппроксимировано ступенчатым
			распределением, а глубина перехода хј=0,5 мкм, считать, что все
			внедренные ионы электрически активны.
			5. В планарном переходе, изготовленном из кремния с удельным
			сопротивлением п-области 2 Ом.см времени жизни дырок 1мкс и
			удельным сопротивлением р-области 0,4 Ом.см и временем жизни
			электронов 5мкс, найти отношение дырочного тока к электронному
			и плотность тока через переход при прямом смещении 0,25 В.
			6. Полупроводниковый диод изготовлен из материала, в котором
			соотношение диффузионных длин Ln/Lp=5, а соотношение
			удельных электропроводимостей бп/бр=10. Найти отношение
			электронного тока к дырочному.
			7. Рассчитать диффузионную емкость p-п перехода диаметром 1 мм
			изготовленного из кремния марки КДБ-1/0.03, если известно, что
			концентрация примеси в п-области много больше, чем в р-области.
			На переход подано прямое смещение 0,3 В.
			8. Определить барьерную емкость германиевого сплавного диода,
			работающего при обратном смещении в 2 В, если площадь
			перехода равна 0,5 см2, а удельное сопротивление соответственно п
			и р-области n=0,01 Ом.см и p= 1,0 Ом.см.
			9. Рассчитать и сравнить между собой ток насыщения в
			германиевом и кремниевом диодах площадью 2 мм2 с
			одинаковыми параметрами р- и п- областей. Концентрация
			акцепторов $Na = 1e17$ см-3, доноров $ND = 1e18$ см-3. Время жизни
			носителей заряда одинаково в обоих областях и равно 1е-5 с.

КМ3	Контрольная	ПК-1-31;ПК-1-	Примеры задач (в варианте 2 задачи):
	работа 2 «Расчет	32;ПК-1-В1	1. Рассчитать и сравнить между собой ток насыщения в
	параметров	,	германиевом и кремниевом диодах площадью 2 мм2 с
	биполярного		одинаковыми параметрами р- и n- областей. Концентрация
	тразистора»		акцепторов Na = $1e17$ см- 3 , доноров ND = $1e18$ см- 3 . Время жизни
	-F		носителей заряда одинаково в обоих областях и равно 10-5 с.
			2. Германиевый р-п-р транзистор имеет следующие параметры.
			Ширина квазинейтральной области базы 0.0005см. Площадь
			коллекторного перехода 0.085 см2, время жизни дырок в базе
			p=20мкс, время жизни электронов в эмиттере n=0.15мкс,
			концентрация примеси в базе 8.1e14см-3, в эмиттере и коллекторе
			NA=5.1e17см-3. Рассчитать коэффициенты передачи по току в
			схеме с общей базой и общим эмиттером.
			3. Расстояние между переходами сплавного n-p-n транзистора,
			изготовленного из кремния марки КДБ-1/0.5, равно 1.1е- 3см.
			Концентрация доноров в эмиттере и коллекторе равна
			концентрации предельной растворимости фосфора в кремнии.
			Рассчитать эффективную ширину квазинейтральной базы, если
			транзистор работает в режиме смещения на эмиттере 0.25В, на
			коллекторе –6В.
			4. Чему равна предельная частота коэффициента передачи по току
			в схеме с общим эмиттером, если предельная частота
			коэффициента передачи по току в схеме с общей базой равна
			15МГц, а коэффициент передачи по току в статическом режиме
			0.985.
			5. Вычислить во сколько раз изменится значение коэффициента
			переноса в базе n-p-n транзистора, изготовленного из кремния,
			если толщина квазинейтральной области базы 30мкм, время жизни
			носителей заряда в ней 300мкс при повышении частоты до
			f=25МГц. Чему равен коэффициент переноса на этой частоте?
			6. Построить зонную диаграмму и рассчитать параметры
			биполярного транзистора: База: ГДГ-1, эмиттер/коллектор: ГЭС-
			0,1; UпрБЭ=0,1 В; UобрКБ=2В.

KM4	Контрольная	ПК-1-31;ПК-1-	Примеры задач (в варианте 2 задачи):
	работа 3 «Расчет	32;ПК-1-У2;ПК-1-	1. Определить разницу работ выхода между металлом и
	параметров	B1	полупроводником и пороговое напряжение для МДП структуры
	полевых		при 300 К со следующими параметрами: р+-поликремниевый
	транзисторов»		затвор, $NA = 2e16$ см-3, $tox = 8$ нм и $Qss = 2e10$ см-2.
			2. Диоды с р-п переходом и барьером Шоттки имеют одинаковую
			площадь и прямой ток 0.5 мА. Обратный ток насыщения диода с
			барьером Шоттки составляет 5·10-7 А. Разница в напряжении
			прямого смещения составляет 0.30 В. Определить обратный ток
			насыщения диода с р-п переходом.
			3. Кремниевый n-канальный МДП-транзистор имеет следующие параметры: μ n= 420 см2/(B·c), толщина окисла tox = 18 нм, длина канала L = 1.2 мкм, ширина канала W = 24 мкм, пороговое
			напряжение $VT = 0.4 \text{ B}$. Транзистор находится в режиме
			насыщения при напряжении затвор-исток VGS = 1.5 В. Определить
			граничную частоту прибора.
			4. Найти максимальную ширину обедненной области в МДП-
			структуре на кремнии р-типа (NA = 2e16 см-3). Как она изменится
			с уменьшением уровня легирования подложки.
			5. Определить разницу работ выхода между металлом и
			полупроводником для МПД структуры Al/SiO2/Si. φ m' = 3.20 эB, χ' (Si/SiO2) = 3.25 эB, Eg = 1.12 эB, NA = 1·1016 см-3.
			6. п-канальный МДП транзистор имеет следующие параметры: μ n= 650 см2/(B·c), tox = 8 нм, W/L = 12 и VT = 0.40 В. Транзистор
			находится в режиме насыщения. Найти ток стока при следующих
			напряжениях затвор-исток: (a) VGS = 0.8 B, (б) VGS = 1.2 B, (в) VGS = 1.6 B.
			7. Кремниевый п-канальный МДП-транзистор имеет следующие
			параметры: μ n= 650 см2/(B·c), длина канала L = 4 мкм, VT = 1 В и
			VGS = 3 В. Определить граничную частоту прибора.
			8. п-канальный МДП транзистор имеет следующие параметры:
			ширина канала $W = 6$ мкм, длина канала $L = 1.5$ мкм и толщина
			оксида tox = 8 нм. В режиме насыщения ток стока ID(sat)
			составляет 0.132 мА при напряжении затвор-исток VGS = 1.0 В и
			0.295 мА при VGS =1.25 В. Определить подвижность электронов и
			пороговое напряжение.
5.2. Переч	чень работ, выполня	емых по дисциплине	(Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)
Код	Название	Проверяемые	
работы	работы	индикаторы	Содержание работы
раооты	раооты	компетенций	
	Задание на	ПК-1-31;ПК-1-	1. Изобразить зонную диаграмму транзистора при равновесии и в
	домашнюю работу	32;ПК-1-У1;ПК-1-	рабочей точке;
	№1 «Расчёт	B1	2. Рассчитать и обозначить на зонной диаграмме ширину
	характеристик		обеднённой области коллекторного и эмиттерного переходов,
	биполярного		включая части обеднённого слоя в различных областях при
			равновесии и в рабочей точке;
	транзистора»		
			3. Определить и построить распределения неосновных носителей
			заряда в различных областях транзистора при равновесии и в рабочей точке;
			4. Рассчитать коэффициент эффективности эмиттера, коэффициент
			переноса через базу, коэффициент рекомбинации в переходе база-
			эмиттер, коэффициент усиления по схеме с общей базой и
			коэффициент усиления по схеме с общим эмиттером;
			5. Определить напряжение прокола базы;
			6. Определить напряжение Эрли;
			7. Определить параметры модели Эберса-Молла;
			8. Построить малосигнальную эквивалентную схему транзистора и
			определить её параметры в рабочей точке:

определить её параметры в рабочей точке; 9. Определить граничную и предельные частоты;

10. Построить частотные зависимости коэффициентов усиления.

TI: 22.03.01-БМТМ-22.plx ctd. 11

P2	Задание на	ПК-1-31;ПК-1-	1. Построить зонную диаграмму МДП-структуры при равновесии
	домашнюю работу	32;ПК-1-У1;ПК-1-	(до и после контакта);
	№2 «Расчёт	B1	2. Построить распределения носителей заряда, электрического
	характеристик		поля и потенциала при равновесии;
	МДП-транзистора»		3. Определить напряжение плоских зон, построить зонную
			диаграмму МДП-структуры, распределения носителей заряда,
			электрического поля и потенциала при напряжении плоских зон;
			4. Определить пороговое напряжение, построить зонную
			диаграмму МДП-структуры, распределения носителей заряда,
			электрического поля и потенциала при пороговом напряжении;
			5. Рассчитать и построить низко- и высокочастотные ВФХ МДП-
			структуры.
			6. Рассчитать зависимость напряжения стока насыщения от
			напряжения на затворе.
			7. Рассчитать и построить теоретические вольтамперные
			характеристики транзистора.
			8. Рассчитать кругизну вольтамперной характеристики.
			9. Определить граничную частоту транзистора.
			10. Построить малосигнальную эквивалентную схему транзистора.

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Экзамен по дисциплине не предусмотрен.

Итоговая оценка складывается из результатов тестирования в течение учебного семестра. Для получения зачета необхолимо набрать больше 60% баллов.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

По дисциплине предполагается следующая шкала оценок:

- а) «отлично» студент показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно действует по применению полученных знаний на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литературу;
- б) «хорошо» студент показывает твердые и достаточно полные знания в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, правильно действует по применению знаний на практике, четко излагает материал;
- в) «удовлетворительно» студент показывает знания в объеме пройденной программы, ответы излагает хотя и с ошибками, но уверенно исправляемыми после дополнительных и наводящих вопросов, правильно действует по применению знаний на практике;
- г) «неудовлетворительно» студент допускает грубые ошибки в ответе, не понимает сущности излагаемого вопроса.

1) «неудовлетворительно» – студент допускает груоые ошиоки в ответе, не понимает сущности излагаемого вопроса.											
6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ 6.1. Рекомендуемая литература 6.1.1. Основная литература											
								Авторы, составители	Заглавие	Библиотека	Издательство, год
							Л1.1	Зи С. М., Трутко А. Ф.	Физика полупроводниковых приборов: пер. с англ.	Библиотека МИСиС	М.: Энергия, 1973
Л1.2	Ковалев А. Н.	Гетероструктурная наноэлектроника: учеб. пособие	Библиотека МИСиС	М.: Изд-во МИСиС, 2009							
6.1.2. Дополнительная литература											
	Авторы, составители	Заглавие	Библиотека	Издательство, год							
Л2.1	Ханефт А. В.	Ионные и электронные процессы и контактные явления в широкозонных полупроводниках: электронное учебное пособие: учебное пособие	Электронная библиотека	Кемерово: Кемеровский государственный университет, 2014							
Л2.2	Бонч-Бруевич В. Л., Калашников С. Г.	Физика полупроводников	Электронная библиотека	Москва: Наука, 1977							
Л2.3	Киреев П. С.	Физика полупроводников: Учеб. пособие для втузов	Библиотека МИСиС	М.: Высш. шк., 1975							
Л2.4	Киреев П. С.	Физика полупроводников: учеб. пособие для студ. вузов	Библиотека МИСиС	М.: Высш. шк., 1969							

	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л2.5	Шалимова К. В.	Физика полупроводников: учебник для вузов по спец. 'Полупроводниковые и	Библиотека МИСиС	М.: Энергия, 1971
		микроэлектрон. приборы'		
Л2.6	Кольцов Г. И.	СВЧ-приборы и интегральные микросхемы: Разд.: Гетеробиполярные СВЧ-транзисторы: учеб. пособие для студ. спец. 200.200	Библиотека МИСиС	М.: Учеба, 1998
Л2.7	Кольцов Г. И.	СВЧ-приборы и интегральные микросхемы: Разд.: Полевые транзисторы GaAs с затвором в виде барьера Шоттки: учеб. пособие для студ. спец. 200.200	Библиотека МИСиС	М.: Учеба, 1998
Л2.8	Ковалев А. Н., Фоломин П. И.	Твердотельная электроника: Разд.: Контактные явления: Учеб. пособие	Библиотека МИСиС	М.: Учеба, 1997
Л2.9	Мартынов В. Н., Кольцов Г. И.	Полупроводниковая оптоэлектроника: Учеб. пособие для студ. вузов, обучающихся по направл. 'Электроника и микроэлектроника' и спец. 'Микроэлектроника и полупроводниковые приборы'	Библиотека МИСиС	М.: Изд-во МИСиС, 1999
Л2.10	Кольцов Г. И., Горюнов Н. Н., Диденко С. И.	Теория и расчет полупроводниковых приборов и интегральных схем: Разд.: Полевые транзисторы: Лаб. практикум для студ. спец. 2001 и напр. 5507: Ч.2: Лаб. работы 7-10	Библиотека МИСиС	М.: Учеба, 2001
Л2.11	Ковалев А. Н.	Твердотельная электроника: учеб. пособие	Библиотека МИСиС	М.: Изд-во МИСиС, 2010
Л2.12	Ковалев А. Н.	Транзисторы на основе полупроводниковых гетероструктур: монография	Библиотека МИСиС	М.: Изд-во МИСиС, 2011
		6.1.3. Методич	еские разработки	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л3.1	Кольцов Г. И., Ковалев А. Н., Маняхин Ф. И.	Физика полупроводниковых приборов и интегральных схем: лаб. практикум для студ. спец. 20.20, 20.02, 20.03	Библиотека МИСиС	М.: Учеба, 1989
Л3.2	Кольцов Г. И., Горюнов Н. Н., Ладыгин Е. А.	Физика полупроводниковых приборов и элементов интегральных схем: учеб. пособие по практ. занятиям для студ. спец. 0629, 0604, 0643	Библиотека МИСиС	М.: Учеба, 1986
Л3.3	Кольцов Г. И., Диденко С. И., Орлова М. Н.	Физика полупроводниковых приборов. Расчет параметров биполярных приборов: сб. задач	Библиотека МИСиС	М.: Изд-во МИСиС, 2012
	6.2. Переч	ень ресурсов информационно	<u> </u>	и «Интернет»
Э1			http://elibrary.misis.ru/	
Э2			http://lib.misis.ru/elcat.html	
Э3	Термины и определения		http://docs.cntd.ru/document/12	200144924
Э4	elibrary.ru		mup.//emorary.ru/	

Э5	Springer	https://link.springer.com/				
Э6	Web of Science	https://apps.webofknowledge.com				
Э7	Scopus	https://www.scopus.com/				
	6.3 Перечень программного обеспечения					
П.1	Лицензии ПО Windows Server CAL ALNG LicSAPk MVL DvcCAL, ПО WinEDUA3 ALNG SubsVL MVL PerUsr и PerUsr					
П.2	Microsoft Office					
П.3	LMS Canvas					
П.4	MS Teams					
6.4. Перечень информационных справочных систем и профессиональных баз данных						
И.1	Научные журналы и статьи					
И.2	http://elibrary.ru/					
И.3	https://link.springer.com/					
И.4	Web of Science https://apps.webofknowledge.com					
И.5	Scopus https://www.scopus.com/					
И.6	Elsevier https://www.sciencedirect.com/					

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ					
Ауд.	Назначение	Оснащение			
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:	комплект учебной мебели до 36 мест для обучающихся, мультимедийное оборудование, магнитно-маркерная доска, рабочее место преподавателя, ПКс доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus			
K-509	Лаборатория	измеритель параметров пп JI2-31; анализатор импульсов AU-1024-95; измеритель мощности M3-22A; измеритель RCL E7-21; автоматизированный лабораторный стенд МЭ - ВФ; междисциплинарная лабораторная платформа с комплектом ПО NI ELVIS II+ (4 шт.); платы для изучения аналоговых элементов информационно-измерительной техники (5шт.); плата "Аналоговая электроника"; плата "Силовая электроника"(2 шт.); ноутбуки с ПО для проведения лабораторных работ 4 шт.; ПК; пакет лицензионных программ MS Office, комплект учебной мебели			
Читальный зал №4 (Б)		комплект учебной мебели на 20 рабочих мест, компьютеры с подключением к сети «Интернет» и доступом в электронную информационнообразовательную среду университета			
Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.			

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

Дисциплина «Физика полупроводниковых приборов» требует значительного объема самостоятельной работы студента. Отдельные учебные вопросы выносятся на самостоятельную проработку и контролируются посредством текущей аттестации. При этом организуются групповые и индивидуальные консультации. Качественное освоение дисциплины возможно только при систематической самостоятельной работе, что поддерживается системой текущей и рубежной аттестации.