Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректор по безопасности и общим вопросам

Дата подписания: 28. Федеральное государственное автономное образовательное учреждение Уникальный программный ключ: высшего образования

d7a26b9e8ca85e% кай технологический университет «МИСиС»

Рабочая программа дисциплины (модуля)

Физика СВЧ полупроводниковых приборов

Закреплена за подразделением

Кафедра ППЭ и ФПП

Направление подготовки

11.04.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 4 ЗЕТ

Часов по учебному плану 144 Формы контроля в семестрах:

в том числе: зачет с оценкой 3

 аудиторные занятия
 68

 самостоятельная работа
 76

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	3 (2.1)		Итого	
Недель	1	9		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	34	34	34	34
Лабораторные	17	17	17	17
Практические	17	17	17	17
Итого ауд.	68	68	68	68
Контактная работа	68	68	68	68
Сам. работа	76	76	76	76
Итого	144	144	144	144

Программу составил(и):

-, ст.преп., Черных Алексей Владимирович;-, ст.преп., Черных Сергей Владимирович;к.ф.-.м.н., зав.каф., Диденко Сергей Иванович

Рабочая программа

Физика СВЧ полупроводниковых приборов

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - магистратура Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 11.04.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА (приказ от 05.03.2020 г. № 95 о.в.)

Составлена на основании учебного плана:

11.04.04 ПОЛУПРОВОДНИКОВЫЕ ПРЕОБРАЗОВАТЕЛИ ЭНЕРГИИ, 11.04.04-МЭН-22-2.plx , утвержденного Ученым советом ФГАОУ ВО НИТУ "МИСиС" в составе соответствующей ОПОП ВО 22.09.2022, протокол № 8-22

Утверждена в составе ОПОП ВО:

11.04.04 ПОЛУПРОВОДНИКОВЫЕ ПРЕОБРАЗОВАТЕЛИ ЭНЕРГИИ, , утвержденной Ученым советом ФГАОУ ВО НИТУ "МИСиС" 22.09.2022, протокол № 8-22

Рабочая программа одобрена на заседании

Кафедра ППЭ и ФПП

Протокол от 21.06.2022 г., №11

Руководитель подразделения Диденко Сергей Иванович

1. ЦЕЛИ ОСВОЕНИЯ

1.1 Целью дисциплины является ознакомление с основами СВЧ техники, принципами передачи, приема, усиления и детектирования СВЧ-сигналов; изучение физических принципов работы СВЧ полупроводниковых приборов; освоение принципов выбора материалов и подходов к расчету конструкций эпитаксиальных структур, используемых для создания СВЧ приборов; изучение конструкций, принципов проектирования и технологии создания СВЧ приборов различного назначения.

	2. M	ЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
	Блок ОП: Б1.В.ДВ.05						
2.1	Требования к предварительной подготовке обучающегося:						
2.1.1	Компьютерные техноло	огии в научных исследованиях					
2.1.2	Технология наногетеро	структур					
2.1.3	Физика наноструктур						
2.1.4	Актуальные проблемы	современной электроники и наноэлектроники					
2.1.5	Методы математическо	ого моделирования					
2.1.6	Методы характеризаци	и полупроводниковых материалов и структур					
2.1.7	Современные методы д	иагностики и исследования наногетероструктур					
2.1.8	Микросхемотехника						
2.1.9	Планирование научной	деятельности					
2.1.10	Приборные структуры	на некристаллических материалах					
2.1.11	Приборные структуры	на широкозонных полупроводниках					
2.1.12	Производственная прав	стика по получению профессиональных умений и опыта профессиональной деятельности					
2.1.13	Силовые полупроводни	ковые приборы					
2.1.14	Перспективные технол-	огии и материалы для поиска новых физических эффектов					
2.2	предшествующее:) и практики, для которых освоение данной дисциплины (модуля) необходимо как					
2.2.1	Подготовка к процедур	е защиты и защита выпускной квалификационной работы					
2.2.2	Преддипломная практи	ка для выполнения выпускной квалификационной работы					

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Знать:

ПК-3-32 Физические принципы измерения характеристик СВЧ полупроводниковых приборов.

ПК-3-31 Физические принципы генерации, усиления, передачи и детектирования СВЧ сигналов.

ПК-2: Способность оптимизировать параметры технологических операций

Знать:

ПК-2-32 Основные технологические операции создания СВЧ полупроводниковых приборов и их параметры.

ПК-4: Способность анализировать и выбирать перспективные материалы, технологические процессы и оборудование производства изделий микроэлектроники

Знать:

ПК-4-32 Физические, конструктивные, технологические ограничения при разработке приборов на различных полупроводниковых материалах.

ПК-4-31 Основные параметры и требования к материалам для создания СВЧ приборов различных классов.

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Знать:

ПК-3-33 Методы и средства измерения параметров и характеристик СВЧ устройств.

ОПК-2: Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач в профессиональной области

Знать:

ОПК-2-31 Физические основы работы современных полупроводниковых приборов СВЧ диапазона.

ОПК-2-32 Физические принципы современных методов исследования СВЧ полупроводниковых приборов.

ПК-2: Способность оптимизировать параметры технологических операций

Знать:

ПК-2-31 Технологические методы создания полупроводниковых гетероструктур.

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Уметь:

ПК-3-УЗ Интерпретировать результаты испытаний опытных партий полупроводниковых СВЧ приборов.

ПК-3-У2 Проводить измерения и испытания полупроводниковых СВЧ приборов.

ПК-4: Способность анализировать и выбирать перспективные материалы, технологические процессы и оборудование производства изделий микроэлектроники

Уметь:

ПК-4-У1 Анализировать и выбирать перспективные материалы, технологические процессы и оборудование производства изделий микроэлектроники.

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

VMOTI

ПК-3-У4 Оформлять протоколы измерений и испытаний опытных партий полупроводниковых СВЧ приборов, оформлять технические отчеты.

ОПК-2: Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач в профессиональной области

Уметь:

ОПК-2-У2 Осуществлять экспериментальные исследования характеристик СВЧ полупроводниковых приборов и проводить их анализ.

ПК-2: Способность оптимизировать параметры технологических операций

Уметь:

ПК-2-У1 Выбирать параметры технологических процессов при разработке технологических маршрутов создания СВЧ полупроводниковых приборов.

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Уметь:

ПК-3-У1 Производить настройку и калибровку оборудования для проведения испытаний образцов полупроводниковых СВЧ приборов.

ОПК-2: Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач в профессиональной области

Уметь:

ОПК-2-У1 Представлять и аргументированно защищать результаты расчетных и экспериментальных работ.

ПК-2: Способность оптимизировать параметры технологических операций

Влалеть

ПК-2-В1 Навыками разработки технологических маршрутов создания СВЧ полупроводниковых приборов.

ПК-4: Способность анализировать и выбирать перспективные материалы, технологические процессы и оборудование производства изделий микроэлектроники

Влалеть

ПК-4-В1 Навыками разработки СВЧ приборов на различных полупроводниковых материалах.

ОПК-2: Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы, осуществлять моделирование, анализ и эксперименты в целях проведения детального исследования для решения сложных задач в профессиональной области

Владеть:

ОПК-2-В1 Навыками расчета и моделирования характеристик СВЧ полупроводниковых приборов.

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Владеть:

ПК-3-В1 Настройкой необходимого оборудования для проведения испытаний опытных образцов полупроводниковых СВЧ

приборов.

ПК-3-В2 Навыками калибровки измерительного оборудования, находящегося в составе испытательных СВЧ комплексов.

ПК-3-ВЗ Навыками проведения испытаний опытных партий полупроводниковых СВЧ приборов.

		4. CTI	РУКТУР	А И СОДЕРЖА	НИЕ			
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Техника СВЧ							
1.1	Способы генерации, предачи, приема и преобразования СВЧ сигналов. Элементы СВЧ устройств и СВЧ схем. /Лек/	3	2	ОПК-2-31 ПК- 3-31	Л1.1Л2.2 Л2.3 Э4 Э6			
1.2	Методы детектирования и измерения СВЧ сигнала. Генераторы и приемники СВЧ излучения. /Лек/	3	2	ПК-3-31 ПК-3- 33	Л1.1Л2.2 Л2.3 Э1			
1.3	Практическое занятие №1 "Расчет коэффициентов отражения и передачи для СВЧ четырехполюсника. Система S-параметров. Вывод уравнений." /Пр/	3	2	ОПК-2-31 ОПК-2-В1	Л2.3 Л1.2Л2.2 Э4		KM1	
1.4	Самостоятельное изучение методов измерения электрических параметров электронных изделий СВЧ. Подготовка к семинару /Ср/	3	2	ОПК-2-32 ПК- 3-31 ПК-3-32 ПК-3-33	Л1.1Л2.5 Э1 Э4 Э5 Э6 Э7			
1.5	Практическое занятие №2 "Методы и оборудование для измерения основных параметров СВЧ приборов". /Пр/	3	2	ОПК-2-32 ПК- 3-31 ПК-3-32 ПК-3-33 ПК-3- У2	Л1.1Л2.5Л3. 2 Э1		KM1	
	Раздел 2. Полупроводниковые СВЧ диоды							
2.1	Диоды СВЧ-диапазона. Смесительные, видео-, параметрические, ограничительные и переключательные диоды. Назначение, принцип работы, особенности конструкций и выбор материала. Технологические приемы создания. Устройства на основе диодных структур. /Лек/	3	2	ОПК-2-31 ПК- 2-32 ПК-4-31 ПК-4-32	Л1.6Л2.6 Л2.10			
2.2	р-і-п диод. Расчет поля и потенциала. Вольтамперная характеристика. Работа на переменном сигнале, эквивалентная схема. /Лек/	3	2	ОПК-2-31	Л1.6Л2.6			
2.3	Проработка лекционного материала. Подготовка к семинару. Изучение основных характеристик и параметров СВЧ диодов различных классов. /Ср/	3	2	ОПК-2-31 ПК- 4-31 ПК-4-32	Л1.6Л2.7 Л2.10 Э4 Э5 Э6 Э7			

2.4	Практическое занятие №3 "Расчет конструкций и параметров СВЧ диодов различных типов. Расчет эквивалентной схемы и частотных зависимостей полного сопротивления диодов. Технологические схемы изготовления." /Пр/	3	2	ОПК-2-31 ОПК-2-В1 ПК- 2-32 ПК-4-31 ПК-4-32	Л1.6Л2.10Л3	KM2	
	Раздел 3. СВЧ биполярные транзисторы						
3.1	Кремниевые СВЧ транзисторы. Физические принципы работы и конструкции. Технологические схемы создания. Физические и конструктивные ограничения частотного диапазона. Критерий выбора материала СВЧ БТ. /Лек/	3	2	ОПК-2-31 ПК- 2-31 ПК-2-32 ПК-4-31 ПК-4- 32	Л1.5 Л1.6Л2.9 Л2.10 Л2.11 Э2		
3.2	Гетеробиполярный транзистор. Принцип работы. Коэффициенты, характеризующие работу транзистора. /Лек/	3	1	ОПК-2-31	Л1.6Л2.9 Л2.11 Э4 Э5 Э6 Э7		
3.3	Анизотипный гетеропереход. Современные методы получения гетеропереходов. Поле и потенциал гетероперехода. Модели токопереноса. Коэффициент инжекции гетероэмиттера. /Лек/	3	2	ОПК-2-31 ПК- 2-31	Л1.6Л2.9 Л2.10 Л2.11		
3.4	Практическое занятие №4 "Методы выращивания гетеростуктурного эмиттера. Требования к материалу эмиттера. Расчет зонной диаграммы гетеробиполярного транзистора." /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 4-32 ПК-2-31 ПК-4-У1	Л1.6Л2.9 Л2.11	KM3	
3.5	Практическое занятие №5 "Расчет токов, протекающих в гетеробиполярном транзисторе. Расчет коэффициента инжекции гетероэмиттера, коэффициента переноса и коэффициентов усиления в схеме с общей базой и схеме с общим эмиттером" /Пр/	3	2	ОПК-2-31 ОПК-2-В1 ПК- 4-32	Л1.6Л2.9 Л2.11	KM3	

	1		•				
3.6	Гетеробиполярные транзисторы на основе гетеростуктур AlGaAs/GaAs и Si/SiGe. Технологические особенности получения гетероструктур. Конструкции и технология создания приборных структур. Конструктивные ограничения частотного диапазона. /Лек/	3	2	ОПК-2-31 ПК- 2-31 ПК-2-32 ПК-4-31 ПК-4- 32	Л1.6Л2.8 Л2.9 Л2.10 Л2.11 Э4 Э5 Э6 Э7		
3.7	Методы повышения частотного диапазона гетеробиполярных транзисторов. Транзисторы на горячих электронах. Варизонная база. Создание квазиэлектрических полей в базе транзистора. Транзисторы с проницаемой базой. /Лек/	3	2	ОПК-2-31 ПК- 4-31 ПК-4-32	Л1.3 Л1.4 Л1.6Л2.9 Л2.11 Э4 Э5 Э6 Э7		
3.8	Проработка лекционного материала. Изучение характеристик и основных параметров биполярных транзисторов. /Ср/	3	2	ОПК-2-31 ПК- 2-31 ПК-2-32 ПК-4-32	Л1.6Л2.7 Э2 Э4 Э5 Э6 Э7		
3.9	Выполнение домашней работы №1 "Расчет характеристик и проектирование гетеробиполярного транзистора на основе GaAs" /Ср/	3	25	ОПК-2-31 ОПК-2-В1 ПК- 2-31 ПК-2-32 ПК-2-У1 ПК-2 -В1 ПК-4-31 ПК-4-32 ПК-4- У1 ПК-4-В1	Л2.9 Л2.11Л2.8 Э4		P1
	Раздел 4. Полевые транзисторы СВЧ диапазона						
4.1	Полевой СВЧ транзистор с барьером Шоттки на основе GaAs. Физика работы, конструкция, технология, перспективные материалы. Проблемы повышения частотного диапазона. Переход к технологии селективно-легированных гетеространзсторов. /Лек/	3	2	ОПК-2-31 ПК- 2-32 ПК-4-31 ПК-4-32	Л1.6Л2.10Л3 .3 Л3.4 Э4 Э5 Э6 Э7		
4.2	Практическое занятие №6 "Расчет параметров эквивалентной схемы полевого транзистора с барьером Шоттки. Расчет граничной частоты. Влияние конструкции и технологических приемов изготовления на частотные характеристики." /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 2-32 ПК-2-У1 ПК-4-31 ПК-4- 32 ПК-4-У1	Л1.6 Л2.9 Л2.11Л3.3 Л3.4	KM4	
4.3	Лабораторная работа №1 "Измерение параметров СВЧ полевого транзистора с барьером Шоттки на основе GaAs" /Лаб/	3	6	ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-У2 ПК -3-32 ПК-3-33 ПК-3-У1 ПК-3 -У2 ПК-3-У3 ПК-3-У4 ПК-3 -B1 ПК-3-B2 ПК-3-B3	Л1.1 Л1.6Л3.2 Э1 Э4		P2

4.4	Принцип модулированного легирования. Подвижность в двумерном электронном газе. Управление зарядом в ДЭГ. Селективнолегированный гетеротранзистор или HEMT (high-electronmobility transistor). /Лек/	3	2	ОПК-2-31 ПК-4-32	Л1.1 Л1.3 Л1.6Л2.9 Л2.11Л2.12 Э4 Э5 Э6 Э7		
4.5	НЕМТ. Конструкции и технологические особенности создания транзисторов на гетеростуктурах AlGaAs/GaAs, AlGaN/GaN и AlGaO/Ga2O3. Конструкции. Проблемы и перспективы. /Лек/	3	1	ОПК-2-31 ПК- 2-31 ПК-2-32 ПК-4-31 ПК-4- 32	Л1.6Л2.9 Л2.10 Л2.11 Э4 Э5 Э6 Э7		
4.6	Проработка лекционного материала. Изучение типов и характеристик СВЧ полевых транзисторов, основных параметров и технологических особенностей создания. Подготовка к практическим занятиям. /Ср/	3	2	ОПК-2-31 ПК- 2-31 ПК-2-32 ПК-4-31 ПК-4- 32	Л1.6 Л2.9 Л2.11Л2.7 ЭЗ Э4 Э5 Э6 Э7		
4.7	Практическое занятие №7 "Расчет концентрации носителей в двумерном электронном газе. Расчет эквивалентной схемы селективно легированного гетеротранзистора. Расчет граничной частоты. Влияние конструкции и технологии на характеристики прибора" /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 2-31 ПК-2-32 ПК-2-У1 ПК-4 -31 ПК-4-32 ПК-4-У1	Л2.9 Л2.11Л2.12 Э4	KM4	
4.8	Практическое занятие №8 "Подход к выбору конструкции гетеростуктуры, расчет конструкции транзистора с высокой подвижностью электронов. Технологические особенности создания транзистора на гетеростуктурах AlGaAs/GaAs, AlGaN/GaN и AlGaO/Ga2O3" /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 2-31 ПК-2-32 ПК-2-У1 ПК-2 -В1 ПК-4-32 ПК-4-У1	Л2.9 Л2.11Л2.12 Э4	KM4	
4.9	Выполнение домашней работы №2 "Расчет характеристик и проектирование селективно легированного гетеротранзистора на основе GaAs" /Ср/	3	25	ОПК-2-31 ОПК-2-У1 ОПК-2-В1 ПК- 2-31 ПК-2-32 ПК-2-У1 ПК-2 -В1 ПК-4-31 ПК-4-32 ПК-4- У1 ПК-4-В1	л2.9 л2.11л2.12 Э4 Э5 Э6 Э7		Р3

4.10	Лабораторная работа №2 "Измерение шумовых характеристик СВЧ полевого транзистора с барьером Шоттки на основе GaAs" /Лаб/	3	6	ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-У2 ПК -3-32 ПК-3-33 ПК-3-У1 ПК-3 -У2 ПК-3-У3 ПК-3-У4 ПК-3 -В1 ПК-3-В2 ПК-3-В3	Л1.6Л3.2 Э1 Э4		P4
4.11	Подготовка к контрольной работе № 1 "Расчет характеристик гетеробиполярного и полевого селективно легированного гетеротранзистора на основе GaAs" /Ср/ Раздел 5. Приборы с	3	6	ОПК-2-31 ОПК-2-В1	Л1.6 Л2.9 Л2.11Л2.12 Л2.8 Э4	KM5	
	отрицательным дифференциальным сопротивлением						
5.1	Туннельные диоды. Резонансно-туннельный диод. Конструкции и технология формирования приборных структур. Принцип работы. Применение. Статические ВАХ, эквивалентная схема. Принцип генерации сигнала. /Лек/	3	2	ОПК-2-31 ПК- 4-32	Л1.1 Л1.6Л2.1 Л2.10 Э4		
5.2	Эквивалентная схема туннельного диода. Влияние конструкции на выходную мощность и частотные характеристики. /Лек/	3	2	ОПК-2-31 ПК- 4-У1	Л1.1 Л1.6Л2.1 Э4		
5.3	Практическое занятие №9 "Расчет коэффициента прозрачности двухбарьерной гетеростуктуры РТД. Расчет эквивалентных схем туннельных и резонансно- туннельных диодов." /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 4-32	Л1.3 Л1.4	KM6	
5.4	Приборы работающие на эффекте междолинного перехода электронов. Диод Ганна. Физические принципы работы, требования к материалам, конструкции. Технологические особенности создания. /Лек/	3	2	ОПК-2-31 ПК- 3-31 ПК-4-32	Л1.6 Э4		
5.5	Диод Ганна. Режимы работы: обогащения заряда, доменный, режим с разрушением домена, ограничения накопления объемного заряда. /Лек/	3	2	ОПК-2-31 ПК- 3-31 ПК-4-32	Л1.6 Э4		

5.6	Практическое занятие №10 "Расчет конструкций диода Ганна на различных материалах исходя из заданных параметров прибора. Особенности конструкции и технологии приборных структур." /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 2-31 ПК-2-32 ПК-4-31 ПК-4- 32	Л1.6	KM6	
5.7	Практическое занятие №11 "Расчет токов, протекающих в диоде Ганна в различных рабочих режимах" /Пр/	3	2	ОПК-2-31 ОПК-2-В1	Л1.6	KM6	
5.8	Приборы, обладающие отрицательным дифференциальным сопротивлением в динамическом режиме. Лавинно-пролетные диоды. Физика и режимы работы. Основные типы и конструкции. Технологические особенности создания. /Лек/	3	2	ОПК-2-31 ПК- 2-32 ПК-3-31 ПК-4-32	Л1.6Л1.1 Л2.10 Э4		
5.9	Основные уравнения для расчета токов в ЛПД. Условия возникновения динамического отрицательного дифференциального сопротивления. /Лек/	3	2	ОПК-2-31 ПК- 3-31	Л1.6 Э4		
5.10	Практическое занятие №12 "Расчет конструкций лавинно-пролетных диодов на Si, GaAs, InP и Ge. ЛПД на основе гетеростуктур. Подход к выбору материала. Конструкции. Технологические приемы изготовления." /Пр/	3	1	ОПК-2-31 ОПК-2-В1 ПК- 2-32 ПК-2-У1 ПК-2-В1 ПК-3 -31 ПК-4-32 ПК-4-31 ПК-4- У1 ПК-4-В1	Л1.6Л1.1 Л2.10	КМ6	
5.11	Лабораторная работа №3 "Измерение выходной мощности ЛПД" /Лаб/	3	5	ОПК-2-31 ОПК-2-32 ОПК-2-У1 ОПК-2-У2 ПК -3-31 ПК-3-32 ПК-3-33 ПК-3- У1 ПК-3-У2 ПК-3-У3 ПК-3 -У4 ПК-3-В1 ПК-3-В2 ПК-3	Л1.6Л3.2		P5
5.12	Проработка лекционного материала по теме "Приборы с отрицательным дифференциальным сопротивлением" /Ср/	3	6	ОПК-2-31 ПК- 3-31 ПК-4-32	Л2.1 Л1.3 Л2.9 Л2.10Л1.1 Э4 Э5 Э6 Э7		
5.13	Подготовка к контрольной работе № 2 "Расчет характеристик СВЧ приборов с участком отрицательного дифференциального сопротивления" /Ср/	3	6	ОПК-2-31 ОПК-2-В1 ПК- 3-31	Л1.6Л1.1 Э4	KM7	

5	.1. Контрольные меро		ая работа, тест, коллоквиум, экзамен и т.п), вопросы для оятельной подготовки
Код КМ	Контрольное мероприятие	Проверяемые индикаторы компетенций	Вопросы для подготовки
KM1	Вопросы для самостоятельной подготовки к практическим занятиям по разделу "Техника СВЧ"	ОПК-2-31;ОПК-2- 32;ПК-3-31;ПК-3- 32;ПК-3-33	1. Частоты электромагнитных волн, относящиеся к СВЧ-диапазону и особенности СВЧ-волн. Принципы передачи СВЧ- сигнала. 2. Способы генерации, предачи, приема и преобразования СВЧ сигналов. 3. Элементы СВЧ устройств и интегральных СВЧ схем. 4. Линии передачи СВЧ колебаний. 5. Генераторы и приемники СВЧ излучений. 6. Передающие и принимающие антенны. 7. Принципы измерения мощности СВЧ. 8. Измерения коэффициента усиления и коэффициента шума. 9. Измерение коэффициента стоячей волны напряжения. 10. Принципы измерения частоты СВЧ колебаний. 11. Современные п/п приборы, работающие в СВЧ-диапазоне. 12. Частотные ограничения для различных п/п приборов. Диоды, биполярные и полевые транзисторы.
KM2	Вопросы для самостоятельной подготовки к практическим занятиям по разделу "Полупроводников ые СВЧ диоды"	ОПК-2-31;ПК-2- 32;ПК-4-31;ПК-4- 32	 Диоды СВЧ-диапазона. Смесительные и видео-диоды, особенности конструирования диодов для СВЧ-диапазона. Диоды СВЧ-диапазона. Параметрические диоды, назначение, принцип действия и частотный предел. Диоды СВЧ-диапазона. Ограничительные и переключательные диоды. Особенности конструирования. Принцип действия. Применение диодов Шоттки, принцип действия, токи, протекающие через диод Шоттки. Конструкции диодов Шоттки, предназначенных для СВЧ-диапазона.
KM3	Вопросы для самостоятельной подготовки к практическим занятиям по разделу "СВЧ биполярные транзисторы"	ОПК-2-31;ПК-2- 31;ПК-2-32;ПК-4- 31;ПК-4-32;ПК-4- У1	1. Биполярные транзисторы СВЧ-диапазона. Особенности конструирования. Требования к конструкции. 2. Связь между горизонтальными и вертикальными размерами БТ с частотным диапазоном работы. 3. Кремниевые СВЧ биполярные транзисторы. Особенности конструкции. Основные частотные ограничения. 4. Особенности конструирования современных мощных Si-БТ для СВЧ-диапазона. 5. Ограничения уровня легирования эмиттерной и базовой областей БТ. 6. БТ из GaAs, необходимость создания гетероэмиттера. Методы роста гетероэмиттера. 7. Типичная конструкция ГБТ на GaAs, технологические приемы их изготовления, эквивалентная схема и рабочий диапазон. 8. Основные соотношения для расчета поля, потенциала и барьерной емкости гетероперехода. 9. Основные токи, протекающие через структуру ГБТ. 10. Частотные характеристики ГБТ и методы повышения частотного диапазона. 11. Особенности конструирования базовой области ГБТ. Технологические приемы. Создание варизонной базы. 12. Коэффициент передачи, граничная и максимальная частота ГБТ - способы их увеличения. 13. Роль различных эффектов, возникающих при работе мощных СВЧ-БТ на их параметры и частотный диапазон. Высокий уровень инжекции. Оттеснение эмиттерного тока. Эффект Кирка. 14. Современные методы получения гетероструктур. Жидкофазная эпитаксия. Молекулярно-пучковая эпитаксия. МОС-гидридная эпитаксия. Молекулярно-пучковая эпитаксия. МОС-гидридная эпитаксия. 15. Конструктивные и технологические ограничения при разработке ГБТ на основе гетероструктур AlGaAs/GaAs и SiGe.

KM4	Вопросы для	ОПК-2-31;ОПК-2-	1. Полевые кремниевые СВЧ-транзисторы. Особенности
IXIVI4	самостоятельной	В1;ПК-2-31;ПК-2-	конструкции. Основные ограничения.
	подготовки к	32;ПК-2-У1;ПК-4-	2. Полевые транзисторы с барьером Шоттки на GaAs. Конструкция
	· ·	31;ΠK-4-32;ΠK-4-	и технология изготовления.
	практическим занятиям по	У1	3. ВАХ ПТ с БШ из GaAs. Анализ выражения для тока стока и
	разделу "Полевые	J 1	
	транзисторы СВЧ		кругизны. 4. Эквивалентная схема ПТБШ из GaAs, анализ элементов и
	диапазона"		сопоставление с конструкцией.
	дианазона		
			5. Частотные характеристики ПТ из GaAs с барьером Шоттки.
			Расчет граничной частоты. Влияние конструкции. Технологические
			ограничения.
			6. Недостатки ПТБШ из GaAs и переход к селективно-
			легированным ПТ. Методы создания СЛГТ.
			7. Селективно-легированные гетеротранзисторы. Двумерный
			электронный газ. Назначение отдельных слоев СЛГТ.
			8. Управление концентрацией носителей заряда в слое ДЭГ с
			помощью напряжения на затворе.
			9. Вольт-амперные характеристики СЛГТ, факторы, определяющие
			ток стока и кругизну.
			10. Необходимость применения различных полупроводниковых
			соединений в гетеропарах для ГБТ и СЛГТ.
			11. Методы роста гетероэпитаксиальных структур ГБТ и СЛГТ.
			12. Основные технологические этапы изготовления ГБТ и СЛГТ.
			13. Параметры полевого транзистора как четырехполюсника. S-
			параметры.
			14. Однонаправленный коэффициент усиления по мощности.
			Коэффициент усиления.
			15. Максимальная мощность ПТ на GaAs.
			16. Принцип измерения выходной мощности GaAs ПТ,
			коэффициента усиления по мощности и КПД.
			17. Устройство измерительного стенда для измерения выходной
			мощности GaAs ПТ: генератор СВЧ-мощности, аттенбаторы,
			трансформаторы, термисторы.
	•	•	-

работа № 1 "Расчет карактеристик в построить зонную диаграмму гетеробиновярного и полекого селективно легированного селективно легированного селективно легированного селективно легированного гетеротранизора на основе GaAs". Вариант 2. Рассчитать кооффициенты h216 и h215 для гетеробиновярного транзистора селедующей конструкции: Эмиттер - п Акуа1-хАх = 0,23, легированный креминем до 1*10*18 см^-3; Коллектор - п-GaAs, легированный креминем до 1*10*19 см^-3; Коллектор - п-GaAs, легированный креминем до 1*10*19 см^-3; Коллектор - п-GaAs, легированный креминем до 5*10*17 см^-3; Ваза - р-GaAs, петированный креминем до 5*10*17 см^-3; Ваза - р-GaAs, легированный креминем до 5*10*17 см^-3; Коллектор - п-GaAs, легированный креминем до 5*10*17 см^-3; База - р-GaAs, легированный креминем до 5*10*17 см^-3. Вараерия следующей конструкции: Эмиттер - п Акуа1-хАз - 2,077, легированне креминем 1*10*18 см^-3, голлена до 6. В, напряжение коллектор-база - 20 В. Задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п Акуа1-хАз - делегированный (фоновую концентрацию допорной примеси принять 1*10*14 см^-3). Вариант 2. Рассчитать слоеную концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п Акуа1-хАз х=0,27, легирование креминем 2*10*18 см^-3, толлина 250 А; Буферный слой - п Акуа1-хАз х=0,27, легирование креминем 1*10*14 см^-3, толлина 250 А; Буферный слой - п Акуа1-хАз х=0,29, легирование креминем 1*10*18 см^-3, толлина 300 А; Буферный слой - п Акуа1-хАз х=0,29, легированые кремнем 1*10*18 см^-3, толлина 300 А; Буферный слой - п СаАs, нелегированного транзистора с параметрами:	10.45	TC	OFFICA DI OFFICA	
Варнант 1. Рассчитать и построить зонную диаграмму гетеробиновярного и полевого и полевого и полевого селективно гетеротранзистора на основе GaAs". Варнант 2. Рассчитать коофрициенты h216 и h21-л для гетеробиновярного транзистора спарамеций коремпием до в*10*19 см*-3; Коллектор - пGaAs, детированный креминем до 1*10*18 см*-3. Варнант 2. Рассчитать коофрициенты h216 и h21-л для гетеробиновярного транзистора следующей конструкции: Эмиттер - п. AlxGa1-хAs x=0,23, летирование креминем 3*10*17 см*-3; База - р-GaAs, детированный креминем до 1*10*19 см*-3; Коллектор - пGaAs, детированный креминем до 5*10*17 см*-3. Вариант 3. Рассчитать ток коилектора для гетеробиновирного транзистора следующей конструкции: Эмиттер - п. AlxGa1-хAs x=0,27, детирование креминем 5*10*17 см*-3; Ваза - р-GaAs, детированный креминем до 5*10*19 см*-3; Коллектор - пGaAs, детированный креминем до 5*10*19 см*-3; Анаряжение эмиттер база 0,6 В, напряжение коллектор-база −20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно детированного трензистора с параметрами: Барьерний слой - п. GaAs, детированный (фоновую концентрацию донорной примеси принять 1*10*14 см*-3). Вариант 2. Рассчитать спосвую концентрацию в ДЭГ, напряжение отсечки для селективно летированного транзистора с параметрами: Барьерный слой - п. AlxGa1-хAs x=0,27, детирование кремнием 2*10*18 см*-3, толщина 250 А; Буферный слой - п. AlxGa1-хAs x=0,27, детирование кремнием 2*10*18 см*-3, толщина 250 А; Буферный слой - п. AlxGa1-хAs x=0,27, детирование кремнием 2*10*18 см*-3, толщина 250 А; Буферный слой - п. AlxGa1-хAs x=0,27, детирование кремнием 2*10*18 см*-3, толщина 250 А; Буферный слой - п. AlxGa1-хAs x=0,27, детирование кремнием 1*10*18 см*-3, толщина 250 А; Буферный слой - п. GaAs, недетированного транзистора с параметрами: Барьерный слой - п. GaAs, недетированной (фоновую концентрацию донорий примеси принять 1*10*14 см*-3.)	KM5	Контрольная	ОПК-2-31;ОПК-2-	задача 1:
тетеробиполярного и полевого селективно селективно селективно петирование от селективно отсеми для селективно легированный (фоновую концентрацию донорной примеси принять 1*10*14 см.*3, толщина 250 А; буферный слой - п АlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10*18 см.*3, толщина 250 А; буферный слой - п AlxGal.×As x=0.27, легирование кремнием 2*10			BI	Denuevit 1 Descriptions is recommended assumed the process of
и полевого селективно см'-3; Ваза - р-GAS, легированный креминем 6*10^17 см'-3; Ваза - р-GAS, легированный креминем до 1*10^18 см'-3; Коллектор - п-GAS, легированный креминем до 1*10^18 см'-3. Вариант 2. Рассчитать коэффициенты h216 и h21э для гетеробиполярного транзистора следующей ковструкции: Эмиттер - п AlxGa1-хAS x=0,23, легированный креминем до 1*10^19 см'-3; База - р-GAS, легированный креминем до 1*10^19 см'-3; База - р-GAS, легированный креминем до 5*10°17 см'-3. Вариант 3. Рассчитать ток коллектора для гетеробиполяриног транзистора следующей конструкции: Эмиттер - п AlxGa1-хAS x=0,27, легирование креминем 5*10°17 см'-3. Вариант 3. Рассчитать ток коллектора для гетеробиполяриног транзистора следующей конструкции: Эмиттер - п AlxGa1-хAS x=0,27, легированием до 5*10°19 см'-3; Коллектор - п-GAS, легированный креминем до 5*10°19 см'-3; Коллектор - п-GAS, легированный креминем до 5*10°19 см'-3; Напряжение эмиттер база 0.6 В, напряжение коллектор-база −20 В. Задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного треизистора с параметрами: Барьерный слой - п AlxGa1-хAS x=0,27, легирование креминем 1*10°18 см'-3, толицина 500 А; Буферный слой - п GAS, нелегированный (фоновую концентрацию донорной примеси принять 1*10°14 см'-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хAS x=0,27, легирование креминем 2*10°18 см'-3, толицина 250 А; Буферный слой - п GAAS, нелегированный (фоновую концентрацию донорной примеси принять 1*10°14 см'-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п GAAS, нелегированные в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п GAAS, нелегированные фоновую концентрацию донорной примеси принять 1*10°14 см'-3.		1 1		
селективно легированного гетерогранзистора на основе GaAs*. Вариант 2. Рассчитать кооффициенты h216 и h21э для гетеробиполярного транзистора на основе GaAs*. Вариант 2. Рассчитать кооффициенты h216 и h21э для гетеробиполярного транзистора следующей конструкции: Эмиттер - n AlxGa1-xAs x=0,23, легированны кремнием 3*10*17 см^-3; База - p-GaAs, легированный бериллием до 1*10*19 см^-3; Коллектор - n-GaAs, легированный кремицем до 5*10*17 см^-3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - n AlxGa1-xAs x=0,27, легированне кремнием 5*10*17 см^-3; База - p-GaAs, легированный бериллием до 5*10*19 см^-3; Коллектор - n-GaAs, легированный бериллием до 5*10*19 см^-3; Коллектор - n-GaAs, легированный бериллием до 5*10*17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легированные кремнием 1*10*18 см^-3, топщина 500 А; Буферный слой - n-GaAs, нелегированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10*18 см^-3, топщина 250 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорой примеси принять 1*10*14 см^-3). Вариант 3. Рассчитать слоевую концентрованный (фоновую концентрацию донорой примеси принять 1*10*14 см^-3). Вариант 3. Рассчитать слоевую концентрованный (фоновую концентрацию донорой примеси принять 1*10*14 см^-3). Вараант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10*18 см^-3, топщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорой примеси принять 1*10*14 см^-3).				
Коллектор - п-GaAs, легированный кремнием до 1*10^18 см^-3. Вариант 2. Рассчитать коэффициенты h216 и h21э для гетеробиновярного транзистора следующей конструкции: Эмиттер - л AlXGa1-xAs т-0.23, легированные кремнием 3*10^17 см^-3; База - р-GaAs, легированный бериллием до 1*10^19 см^-3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^-3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - л AlXGa1-xAs т-0,27, легирование кремнием 5*10^17 см^-3; База - р-GaAs, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GaAs, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного тренистора с параметрами: Барьерный слой - п AlXGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толициа 500 A; Буферный спой - п-GaAs, непетированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlXGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толициа 250 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 250 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толициа 300 A; Буферный слой - п AlXGa1-xAs x=0,29, легирование кре				
на основе GaAs". Вариант 2. Рассчитать коэффициенты h216 и h21э для гетеробиполярного транзистора следующей конструкции: Эмиттер - п AlxGa1-хAs х=0,23, летирование кремнием 3*10^17 см^3; База - р-GaAs, летированный бериллием до 1*10^19 см^3; Коллектор - п-GaAs, детированный кремнием до *10^17 см^3. Вариант 3. Рассчитать ток коллектора для гетеробинолярного транзистора следующей конструкции: Эмиттер - п AlxGa1-хAs x=0,27, летирование кремнием 5*10^17 см^3; База - р-GaAs, летированный бериллием до 5*10^19 см^3; Коллектор - п-GaAs, летированный кремнием до 5*10^17 см^3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно летированного трензистора с параметрами: Барьерный слой - п AlxGa1-хAs x=0,27, летирование кремнием 1*10^18 см^3, толщина 500 д; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно летированный (фоновую концентрацию денорной примеси принять 1*10^14 см^3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно летированного транзистора с параметрами: Барьерный слой - п-GaAs, нелегированный (фоновую концентрацию денорной примеси принять 1*10^14 см^3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно летированного транзистора с параметрами: Барьерный слой - п-GaAs, нелегированный (фоновую концентрацию денорной примеси принять 1*10^14 см^3).		легированного		База - p-GaAs, легированный бериллием до 6*10^19 см^-3;
Вариант 2. Рассчитать коэффициенты h216 и h21э для гетеробиповирного гранзистора следующей конструкции: Эмиттер - n AlxGal-xAs x—0.23, гистрование кремнием 3*10^17 см^3; База - p-GaAs, летированный бериллием до 1*10^19 см^3; Коллектор - n-GaAs, летированный кремнием до 5*10^17 см^3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - n AlxGal-xAs x=0.27, летирование кремнием 5*10^17 см^3; База - p-GaAs, легированный бериллием до 5*10^19 см^3; Коллектор - n-GaAs, легированный кремнием до 5*10^17 см^3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно летированного трензистора с параметрами: Барьерный слой - n AlxGal-xAs x=0.27, летирование кремнием 1*10^18 см^3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно летированного транзистора с параметрами: Барьерный слой - n AlxGal-xAs x=0.27, летирование кремнием 2*10^18 см^3, толщина 250 А; Буферный слой - n AlxGal-xAs x=0.27, летирование кремнием 2*10^18 см^3, толщина 250 А; Буферный слой - n AlxGal-хab x=0.29, летирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n AlxGal-xab x=0.29, летирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n-GaAs, нелестированый (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				Коллектор - n-GaAs, легированный кремнием до 1*10^18 см^-3.
Эмиттер - п ÁlxGa1-хАх х=0,23, легирование кремнием 3*10^17 см^3; База - р-GaAs, легированный бериллием до 1*10^19 см^3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - п ÁlxGa1-хАs х=0,27, легирование кремнием 5*10^17 см^3; Коллектор - п-GaAs, легированный бериллием до 5*10^19 см^3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. 3адача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п АlxGa1-хAs х=0,27, легирование кремнием 1*10^18 см^3, толщина 500 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).		na ocnobe dazis.		
см^-3; База - р-GаАs, легированный кремилием до 1*10^19 см^-3; Коллектор - п-GаАs, легированный креминем до 5*10^17 см^-3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - п АlXGa1-хАs х=0,27, легирование кремнием 5*10^17 см^-3; База - р-GаАs, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GаAs, легированный креминем до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного треизистора с параметрами: Барьерный слой - п AlXGa1-хAs х=0,27, легирование кремнием 1*10^18 см^-3, топщина 500 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного траизистора с параметрами: Барьерный слой - п AlXGa1-хAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
База - р-GaAs, дегированный бериллием до 1*10^19 см^-3; Коллектор - n-GaAs, дегированный кремнием до 5*10^17 см^-3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного траизистора следующей конструкции: Эмиттер - n AlxGa1-xAs x=0,27, дегирование кремнием 5*10^17 см^-3; База - р-GaAs, легированный бериллием до 5*10^17 см^-3. Коллектор - n-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. Задача 2 Вариант 1. Рассчитать и построить зонную дияграмму селективно легированного треизистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного траизистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - n -GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного траизистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 250 А; Буферный слой - n AlxGa1-xAs x=0,29, легирование кремнием 2*00 концентрацию донорной примеси принять 1*10^14 см^-3).				
Коллектор - n-GaAs, легированный кремнием до 5*10^17 см^-3. Вариант 3. Рассчитать ток коллектора для гетеробиполярного транзистора следующей конструкции: Эмиттер - n AlxGa1-xAs x=0,27, легирование кремнием 5*10^17 см^-3; База - p-GaAs, легированный бериллием до 5*10^19 см^-3; Коллектор - n-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. 3адача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, голщина 500 д, Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 д, Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				·
транзистора следующей конструкции: Эмиттер - п AlxGa1-xAs x=0,27, легирование кремнием 5*10^17 см^-3; База - р-GaAs, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GaAs, легированный кремлием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - п-GaAs, нелестированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А;				
Эмиттер - п AlxGa1-хAs х=0,27, легирование кремнием 5*10^17 см^-3; База - р-GaAs, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п AlxGa1-хAs х=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - п -GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хAs х=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хAs х=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - п -GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
см^-3; База - р-GаАѕ, легированный бериллием до 5*10^19 см^-3; Коллектор - п-GаАѕ, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п AlxGa1-хAѕ х=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - п-GаАѕ, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хАѕ х=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - п-GaАѕ, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хАѕ х=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - п AlxGa1-хАѕ х=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - п-GaАѕ, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				транзистора следующей конструкции:
База - р-GаАs, легированный кремнием до 5*10^19 см^-3; Коллектор - п-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база −20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толпцина 500 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толпцина 250 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толпцина 300 д; Буферный слой - п GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
Коллектор - n-GaAs, легированный кремнием до 5*10^17 см^-3. Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного треизистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
Напряжение эмиттер база 0,6 В, напряжение коллектор-база -20 В. задача 2 Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^3, толщина 250 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^3, толщина 300 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^3).				
Вариант 1. Рассчитать и построить зонную диаграмму селективно легированного трензистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				Transparketine sammer ousa 6,6 B, nansparketine kossiektop ousa 26 B.
легированного трензистора с параметрами: Барьерный слой - п AlxGa1-хAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-хAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				задача 2
Барьерный слой - n AlxGa1-хAs x=0,27, легирование кремнием 1*10^18 см^-3, толщина 500 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-хAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-хAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
1*10^18 см^-3, толщина 500 A; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
донорной примеси принять 1*10^14 см^-3). Вариант 2. Рассчитать слоевую концентрацию в ДЭГ, напряжение отсечки для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - п AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - п-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
отсечки для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
параметрами: Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
Барьерный слой - n AlxGa1-xAs x=0,27, легирование кремнием 2*10^18 см^-3, толщина 250 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
2*10^18 см^-3, толщина 250 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
донорной примеси принять 1*10^14 см^-3). Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				2*10^18 см^-3, толщина 250 A;
Вариант 3. Рассчитать слоевую концентрацию в ДЭГ для селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
селективно легированного транзистора с параметрами: Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				донорной примеси принять 1*10^14 см^-3).
Барьерный слой - n AlxGa1-xAs x=0,29, легирование кремнием 1*10^18 см^-3, толщина 300 A; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
1*10 ¹ 8 см ⁻ 3, толщина 300 А; Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10 ¹ 4 см ⁻ 3).				
Буферный слой - n-GaAs, нелегированный (фоновую концентрацию донорной примеси принять 1*10^14 см^-3).				
донорной примеси принять $1*10^14$ см -3).				
				Напряжение затвор-подложка принять равным - 1.5 В.

KM6	Вопросы для	ОПК-2-31;ОПК-2-	1. Приборы с отрицательным дифференциальным сопротивлением
	самостоятельной подготовки к	В1;ПК-2-32;ПК-3- 31;ПК-4-31;ПК-4-	на статической ВАХ. Принцип генерации сигнала. 2. Туннельные диоды, принцип действия, статические ВАХ,
	практическим	32	эквивалентная схема. Конструкции и технология"
	занятиям по		3. Характеристические частоты ТД и способы повышения рабочей
	разделу "Приборы		частоты.
	с отрицательным дифференциальны		4. Методы расчета динамических характеристик туннельного диода.
	м сопротивлением"		5. Резонансно-туннельный диод. Принцип работы. Применение.
			Конструкции и технологии создания.
			6. Приборы работающие на эффекте междолинного перехода электронов, требования к полупроводниковым материалам.
			7. Условия получения избыточной концентрации и основные
			режимы работы Ганна. Основные особенности каждого режима.
			8. Решение уравнения непрерывности и пространственно-
			временное распределение избыточной концентрации носителей заряда в диоде Ганна.
			9. Сравнение режимов работы диода Ганна: накопления
			избыточного заряда и доменного.
			10. Режим ограничения накопления носителей заряда (ОНОЗ). Причины применения указанного режима.
			11. Приборы, обладающие отрицательным дифференциальным в
			динамическом режиме. Принцип генерации сигнала.
			12. Лавинно-пролетные диоды. Возможные конструкции и принцип действия.
			13. Основные уравнения, описывающие работу ЛПД.
			14. Расчет полного дифференциального сопротивления ЛПД.
			Расчет отдельных составляющих полного сопротивления.
			15. Эквивалентная схема и принципы конструирования ЛПД.
			16. Расчет сопротивления и выбор материала для базовой области ЛПД.
			лид. 17. Частота генерации ЛПД.
			18. Измерение частоты генерации ЛПД.
			19. Принцип измерения выходной мощности ЛПД.
			20. Устройство измерительного стенда для измерения выходной
			ЛПД: ферритовый вентиль, аттенюатор, волномер, СВЧ детектор.
CM7	Контрольная работа № 2 "Расчет	ОПК-2-31;ОПК-2- В1;ПК-3-31	задача 1:
	характеристик СВЧ		Вариант 1. Рассчитать частоту сигнала диода Ганна, если
	приборов с		концентрация н.з. в образце GaAs составляет ~10^16 см^-3 при
	участком		условии, что подвижность электронов на положительном участке
	отрицательного		зависимости v(E) состваляет 4200, а на
	дифференциальног о сопротивления"		отрицательном 200 см^2/(B*c).
			Вариант 2. Найти среднюю скорость электронов в GaAs при
			величине электрического поля Е= 1*10^3 В/см, эффективную
			массу в L долине принять $0.55m0$, в Γ долине принять $0.067m0$, барьер E ΓL считать равным 0.29 $3B$.
			Вариант 3. Какой длины необходимо выбрать образец GaAs с
			концентрацией 5*10^15 см^-3, чтобы обеспечить устойчивую
			работу в доменном режиме генерации?
			задача 2:
			Вариант 1. Рассчитать параметры ЛПД, изготовленного из Si с p+nn+ переходом при концентрации примеси в n-области 1*10^17 см^-3.
			Вариант 2. Рассчитать параметры ЛПД, изготовленного из GaAs с барьером Шоттки на основе nn+ структуры с концентрацией примеси в n-области 5*10^15 см^—3.
			Вариант 3. Рассчитать параметры ЛПД, изготовленного из InP с p+nn+ структурой при концентрации примеси в n-области 1*10^16 см^-3.

	ень работ, выполняе 	Прополять	
Код	Название	Проверяемые индикаторы	Содержание работы
работы	работы	компетенций	содержание расоты
1	Задание на	ОПК-2-31;ОПК-2-	1. Расчет параметров гетероэмиттера AlGaAs/GaAs
1	домашнюю работу	В1;ПК-2-31;ПК-2-	2. Построение зонной диаграммы ГБТ
	№1 "Расчет	32;ПК-2-У1;ПК-2-	3. Расчет токов, протекающих в транзисторе
	характеристик и	В1;ПК-4-31;ПК-4-	4. Расчет статических коэффициентов
	проектирование	32;ПК-4-У1;ПК-4-	5. Расчет коэффициентов передачи в схеме с ОБ и ОЭ
	гетеробиполярного	В1;ОПК-2-У1	6. Построение частотных характеристик. Расчет предельных,
	транзистора на	B1,0111 2 7 1	граничной частот и частоты генерации.
	основе GaAs"		7. Построение эквивалентной схемы.
			8. Определение основных параметров гетеростуктуры и
			конструкции транзистора.
			9. Разработка технологического маршрута создания транзистора.
			Выбор методов проведения и режимов технологических операций.
			10. Разработка комплекта шаблонов.
			12. Выбор корпуса и расчет согласующих цепей.
			13. Расчет теплоотвода.
			14. Разработка технологического маршрута посадки транзистора в
			корпус.
22	Лабораторная	ОПК-2-31;ОПК-2-	Изучение работы СВЧ полевого транзистора с барьером Шоттки на
-	работа №1	32;ОПК-2-У1;ОПК-	основе GaAs и влияния его конструкции на коэффициент усиления
	"Измерение	2-У2;ПК-3-32;ПК-3	по мощности, выходную мощность и коэффициент полезного
	параметров СВЧ	-33;ПК-3-У1;ПК-3-	действия.
	полевого	У2;ПК-3-У3;ПК-3-	
	транзистора с	У4;ПК-3-В1;ПК-3-	
	барьером Шоттки	В2;ПК-3-В3	
ļ	на основе GaAs"	,	
3	Задание на	ОПК-2-31;ОПК-2-	1. Расчет энергетической диаграммы на границе n-AlGaAs/GaAs
	домашнюю работу	У1;ОПК-2-В1;ПК-2	2. Расчет слоевой концентрации электронов в ДЭГ
	№2 "Расчет	-31;ПК-2-32;ПК-2-	3. Расчет тока стока. Построение выходных ВАХ.
	характеристик и	У1;ПК-2-В1;ПК-4-	4. Расчет крутизны вольт-амперной характеристики.
	проектирование	31;ПК-4-32;ПК-4-	5. Расчет емкостей сток-затвор и затвор-сток
	селективно	У1;ПК-4-В1	6. Расчет граничной частоты.
	легированного		7. Построение эквивалентной схемы.
	гетеротранзистора		8. Определение основных параметров гетеростуктуры и
	на основе GaAs"		конструкции транзистора.
			9. Разработка технологического маршрута создания транзистора.
			10. Разработка комплекта шаблонов.
			12. Выбор корпуса и расчет согласующих цепей.
			13. Расчет теплоотвода.
			14. Разработка технологического маршрута посадки транзистора в
ļ			корпус.
4	Лабораторная	ОПК-2-31;ОПК-2-	Изучение и измерение шумовых характеристик СВЧ полевого
	работа №2	32;ОПК-2-У1;ОПК-	транзистора. Анализ влияния его конструкции и режимов работы
	"Измерение	2-У2;ПК-3-32;ПК-3	на уровень шума. Измерение коэффициента шума.
	шумовых	-33;ПК-3-У1;ПК-3-	
	характеристик СВЧ	У2;ПК-3-У3;ПК-3-	
	полевого	У4;ПК-3-В1;ПК-3-	
	транзистора с	В2;ПК-3-В3	
	барьером Шоттки		
	на основе GaAs"		
I	Лабораторная	ОПК-2-31;ОПК-2-	Изучить работу лавинно-пролетного диода как генератора СВЧ
5		32;ОПК-2-У1;ОПК-	мощности, измерить выходную мощность ЛПД в зависимости от
5	работа №3	32,011K-2-91,011K-	
5	работа №3 "Измерение	2-У2;ΠK-3-31;ΠK-3	режимов и частоты СВЧ-колебаний.
5			режимов и частоты СВЧ-колебаний.
5	"Измерение	2-У2;ПК-3-31;ПК-3	режимов и частоты СВЧ-колебаний.
5	"Измерение выходной	2-У2;ПК-3-31;ПК-3 -32;ПК-3-33;ПК-3-	режимов и частоты СВЧ-колебаний.
5	"Измерение выходной	2-У2;ΠK-3-31;ΠK-3 -32;ΠK-3-33;ΠK-3- У1;ΠK-3-У2;ΠK-3-	режимов и частоты СВЧ-колебаний.

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

Итоговая оценка складывается из результатов тестирования в течение учебного семестра. Для получения зачета необходимо набрать больше 60% баллов.

Экзамен по дисциплине не предусмотрен.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

По дисциплине предполагается следующая шкала оценок:

- а) «отлично» студент показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно действует по применению полученных знаний на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литературу;
- б) «хорошо» студент показывает твердые и достаточно полные знания в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, правильно действует по применению знаний на практике, четко излагает материал;
- в) «удовлетворительно» студент показывает знания в объеме пройденной программы, ответы излагает хотя и с ошибками, но уверенно исправляемыми после дополнительных и наводящих вопросов, правильно действует по применению знаний на практике;
- г) «неудовлетворительно» студент допускает грубые ошибки в ответе, не понимает сущности излагаемого вопроса.

	6. УЧЕ	БНО-МЕТОДИЧЕСКОЕ И ИІ	нформационное обест	печение	
	6.1. Рекомендуемая литература				
		6.1.1. Основн	ая литература		
	Авторы, составители	Заглавие	Библиотека	Издательство, год	
Л1.1	Филонов А. А.	Устройства СВЧ и антенны: учебник	Электронная библиотека	Красноярск: Сибирский федеральный университет (СФУ), 2014	
Л1.2	Пилипенко А. М.	Основы теории четырехполюсников и электрических фильтров: учебное пособие	Электронная библиотека	Ростов-на-Дону, Таганрог: Южный федеральный университет, 2019	
Л1.3	Борисенко В. Е.	Наноэлектроника: теория и практика: учебник	Электронная библиотека	Москва: БИНОМ. Лаборатория знаний, 2015	
Л1.4	Шишкин Г. Г., Агеев И. М.	Наноэлектроника: элементы, приборы, устройства: учебное пособие	Электронная библиотека	Москва: БИНОМ. Лаборатория знаний, 2015	
Л1.5	Колесников В. Г., Никишин В. И., Сыноров В. Ф., др., Федотов Я. А.	Кремниевые планарные транзисторы	Библиотека МИСиС	М.: Сов.радио, 1973	
Л1.6	Зи С. М., Трутко А. Ф.	Физика полупроводниковых приборов: пер. с англ.	Библиотека МИСиС	М.: Энергия, 1973	
	,	6.1.2. Дополните	ельная литература		
	Авторы, составители	Заглавие	Библиотека	Издательство, год	
Л2.1	Баум А. К., Билинский И. Я., Трейс П. П.	Туннельные диоды в схемах промышленной электроники	Электронная библиотека	Москва, Ленинград: Энергия, 1965	
Л2.2	Замотринский В. А., Шангина Л. И.	Устройства СВЧ и антенны: учебное пособие	Электронная библиотека	Томск: Томский государственный университет систем управления и радиоэлектроники, 2012	
Л2.3	Гошин Г. Г.	Устройства СВЧ и антенны: учебное пособие	Электронная библиотека	Томск: Томский государственный университет систем управления и радиоэлектроники, 2012	
Л2.4	Троян П. Е.	Твердотельная электроника: учебное пособие	Электронная библиотека	Томск: Томский государственный университет систем управления и радиоэлектроники, 2006	

	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л2.5	Глазов Г. Н.	Современные технологии и	Электронная библиотека	Томск: Томский
		системы автоматизированного		государственный университет систем
		измерения на СВЧ: конспект		управления и
		лекций: курс лекций		радиоэлектроники, 2012
Л2.6	Николаевский И. Ф.	Транзисторы и	Электронная библиотека	Москва: Государственное
		полупроводниковые диоды: монография		издательство литературы по вопросам связи и радио, 1963
Л2.7	Горюнов Н. Н.,	Справочник по	Библиотека МИСиС	М.: Энергия, 1972
	Клейман А. Ю.,	полупроводниковым диодам,		
	Комков Н. Н., др.,	транзисторам и		
	Горюнов Н. Н.	интегральным схемам		
Л2.8	Кольцов Г. И.	СВЧ-приборы и	Библиотека МИСиС	М.: Учеба, 1998
312.0	Кольцов Г. П.	интегральные микросхемы:	Brosmoreka Wiffene	14 5 leda, 1550
		Разд.: Гетеробиполярные		
		СВЧ-транзисторы: учеб.		
		пособие для студ. спец. 200.200		
Л2.9	Ковалев А. Н.	Гетероструктурная	Библиотека МИСиС	М.: Изд-во МИСиС, 2009
312.9	Robales 71. 11.	наноэлектроника: учеб.	Buosinoreka Wiffene	М изд во мителе, 2009
		пособие		
Л2.10	Ковалев А. Н.	Твердотельная электроника: учеб. пособие	Библиотека МИСиС	М.: Изд-во МИСиС, 2010
Л2.11	Ковалев А. Н.	Транзисторы на основе	Библиотека МИСиС	М.: Изд-во МИСиС, 2011
		полупроводниковых		
		гетероструктур: монография		
		6.1.3. Методиче	еские разработки	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л3.1	Кольцов Г. И.	СВЧ-приборы и	Библиотека МИСиС	М.: Учеба, 1998
		интегральные микросхемы: Разд.: Расчет параметров		
		селективно легированного		
		гетеротранзистора: учеб.		
		пособие для студ. спец.		
		200.200		
Л3.2	Кольцов Г. И., Горюнов Н. Н.,	СВЧ-приборы и интегральные микросхемы:	Библиотека МИСиС	М.: Учеба, 1995
	Юрчук С. Ю.	лаб. практикум для студ.		
	10р тук с. 10.	спец. 20.03		
Л3.3	Кольцов Г. И.	СВЧ-приборы и	Библиотека МИСиС	М.: Учеба, 1998
		интегральные микросхемы:		
		Разд.: Полевые транзисторы		
		GaAs с затвором в виде барьера Шоттки: учеб.		
		пособие для студ. спец.		
		200.200		
Л3.4	Кольцов Г. И.,	Теория и расчет	Библиотека МИСиС	М.: Учеба, 2001
	Горюнов Н. Н.,	полупроводниковых		
	Диденко С. И.	приборов и интегральных схем: Разд.: Полевые		
		транзисторы: Лаб. практикум		
		для студ. спец. 2001 и напр.		
		5507: Ч.2: Лаб. работы 7-10		
Л3.5	Кольцов Г. И.,	Физика полупроводниковых	Библиотека МИСиС	М.: Изд-во МИСиС, 2012
	Диденко С. И., Орлова М. Н.	приборов. Расчет параметров		
	Орлова IVI. П.	биполярных приборов: сб. задач		
	6.2. Переч	пень ресурсов информационно-	⊥ телекоммуникационной сети	 і «Интернет»
			http://docs.cntd.ru/document/120	
Э1		ектрических параметров		
	•			

1		FOOT 20002 74 T	1 //1 / 20002.74	
параметров (с Изменениями N 1, 2)	23	ГОСТ 20003-74. Транзисторы биполярные.	http://docs.cntd.ru/document/gost-20003-74	
ТОСТ 19095-73 Транзисторы полевые. Термины, определения и буквенные обозначения параметров (с Изменением N 1)	92			
(с Изменением N 1) http://elibrary.misis.ru/login.php 34 Электронная библиотека МИСиС https://www.scopus.com/ 35 Seopus https://www.sciencedirect.com/ 36 elibrary.ru https://www.sciencedirect.com/ 6.3 Перечень программного обеспечения П.1 Microsoft Office П.2 LMS Canvas П.3 MS Teams П.4 MATLAB П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 https://elibrary.ru/ И.3 https://links.springer.com/ И.4 Web of Science https://apps.webofknowledge.com И.5 Scopus https://www.scopus.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "СВЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://elibrary.misis.ru			http://docs.cntd.ru/document/1200015676	
Электронная библиотека МИСиС http://elibrary.misis.ru/login.php	Э3			
Scopus https://www.scopus.com/ Gelibrary.ru http://elibrary.ru/ Till Microsoft Office Till Matlas Till AutoCad Till AutoCad Till Occiliux (Ubuntu) / Windows Till Python		I \		
http://elibrary.ru/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://www.sciencedirect.com/ https://elibrary.ru/ https://elibrary.ru		_		
Selevier https://www.sciencedirect.com/	Э5			
II.1 Microsoft Office II.2 LMS Canvas II.3 MS Teams II.4 MATLAB II.5 MATCAD II.6 CorelDRAW Graphics Suite X4 II.7 AutoCAD II.8 OC Linux (Ubuntu) / Windows II.9 Python	Э6	_	*	
П.1 Microsoft Office П.2 LMS Canvas П.3 MS Teams П.4 MATLAB П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 http://elibrary.ru/ И.3 https://link.springer.com/ И.4 Web of Science https://www.scopus.com/ И.5 Scopus https://www.sciencedirect.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Kype "CBЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://elibrary.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	Э7	Elsevier https://www.sciencedirect.com/		
П.2 LMS Canvas П.3 MS Teams П.4 MATLAB П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 https://elibrary.ru/ И.3 https://elibrary.ru/ И.4 Web of Science https://spps.webofknowledge.com И.5 Scopus https://www.sciencedirect.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "СВЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://elibrary.misis.ru/ И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам		·	раммного обеспечения	
П.3 MS Teams П.4 MATLAB П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 https://elibrary.ru/ И.3 https://link.springer.com/ И.4 Web of Science https://apps.webofknowledge.com И.5 Scopus https://www.scopus.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "CBЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://elibrary.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	П.1	Microsoft Office		
П.4 MATLAB П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 http://elibrary.ru/ И.3 https://elibrary.ru/ И.4 Web of Science https://apps.webofknowledge.com И.5 Scopus https://www.sciencedirect.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "CBЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://lms.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	П.2	LMS Canvas		
П.5 MATCAD П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 http://elibrary.ru/ И.3 https://link.springer.com/ И.4 Web of Science https://apps.webofknowledge.com И.5 Scopus https://www.sciencedirect.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "CBЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://lms.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	П.3	MS Teams		
П.6 CorelDRAW Graphics Suite X4 П.7 AutoCAD П.8 OC Linux (Ubuntu) / Windows П.9 Python 6.4. Перечень информационных справочных систем и профессиональных баз данных И.1 Научные журналы и статьи И.2 http://elibrary.ru/ И.3 https://link.springer.com/ И.4 Web of Science https://apps.webofknowledge.com И.5 Scopus https://www.sciencedirect.com/ И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "СВЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://lms.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	П.4	MATLAB		
П.7AutoCADП.8OC Linux (Ubuntu) / WindowsП.9Python6.4. Перечень информационных справочных систем и профессиональных баз данныхИ.1Научные журналы и статьиИ.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scopus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	П.5	MATCAD		
П.8OC Linux (Ubuntu) / WindowsП.9Python6.4. Перечень информационных справочных систем и профессиональных баз данныхИ.1Научные журналы и статьиИ.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scipus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "CBЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	П.6	CorelDRAW Graphics Suite X4		
П.9РуthonИ.1Научные журналы и статьиИ.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scopus.com/И.6Еlsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	П.7	-		
6.4. Перечень информационных справочных систем и профессиональных баз данныхИ.1Научные журналы и статьиИ.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.sciencedirect.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	П.8	OC Linux (Ubuntu) / Windows		
И.1Научные журналы и статьиИ.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scopus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	П.9	Python		
И.2http://elibrary.ru/И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.sciencedirect.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам		6.4. Перечень информационных справоч	ных систем и профессиональных баз данных	
И.3https://link.springer.com/И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scopus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	И.1	Научные журналы и статьи		
И.4Web of Science https://apps.webofknowledge.comИ.5Scopus https://www.scopus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	И.2	* **		
И.5Scopus https://www.scopus.com/И.6Elsevier https://www.sciencedirect.com/И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	И.3	•		
И.6 Elsevier https://www.sciencedirect.com/ И.7 Курс "СВЧ-полупроводниковые приборы" на платформе LMS Canvas И.8 https://lms.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	И.4			
И.7Курс "СВЧ-полупроводниковые приборы" на платформе LMS CanvasИ.8https://lms.misis.ruИ.9Электронная библиотека МИСиСИ.10http://elibrary.misis.ru/И.11Электронная библиотека издательство "Лань"И.12https://e.lanbook.coИ.13Единое окно доступа к образовательным ресурсам	И.5			
И.8 https://lms.misis.ru И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	И.6			
И.9 Электронная библиотека МИСиС И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	И.7	1		
И.10 http://elibrary.misis.ru/ И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам	И.8			
 И.11 Электронная библиотека издательство "Лань" И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам 	И.9	-		
 И.12 https://e.lanbook.co И.13 Единое окно доступа к образовательным ресурсам 	И.10	1		
И.13 Единое окно доступа к образовательным ресурсам	И.11	Электронная библиотека издательство "Лань"		
1 71	И.12	https://e.lanbook.co		
N.14 https://window.edu.ru	И.13	I .		
	И.14	1 11		

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ			
Ауд. Назначение		Оснащение	
Любой корпус Мультимедийная	Учебная аудитория для проведения занятий лекционного типа и/или для проведения практических занятий:		
K-509	Учебная лаборатория/ Лаборатория "Физика полупроводниковых приборов":	измеритель параметров пп Л2-31; анализатор импульсов АИ-1024-95; измеритель мощности М3-22А; измеритель RCL E7-21; автоматизированный лабораторный стенд МЭ - ВФ; междисциплинарная лабораторная платформа с комплектом ПО NI ELVIS II+ (4 шт.); платы для изучения аналоговых элементов информационно-измерительной техники (5шт.); плата "Аналоговая электроника"; плата "Силовая электроника"(2 шт.); ноутбуки с ПО для проведения лабораторных работ 4 шт.; ПК; пакет лицензионных программ MS Office, комплект учебной мебели	

	8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ
Материалы по дисциплине:	

- курс лекций (презентации pdf);
- лекции в видеоформате;
- типовые вопросы и задачи;
- задание на выполнение ДЗ;
- методические указания по выполнению лабораторных работ и ДЗ; рекомендуемая литература,
- приведены на соответсвующем курсе на платформе LMS "Canvas".

Дополнительная литература

- 1. Данилов В.С. Микроэлектроника СВЧ. Новосибирск: Издательство НГТУ, 2007.
- 2. Шухостанов А.К. Лавинно-пролетные диоды. Физика, технология, применение. Москва. Издательство «Радио и связь», 1997, стр 208
- 3. S. M. Sze, Kwok K. Ng. Physics of Semiconductor Devices. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007
- 4. Rüdiger Quay. Gallium Nitride Electronics. Springer-Verlag Berlin Heidelberg. 2008

Переводная версия: Р. Куэй. Электроника на основе нитрида галлия. Москва. «Техносфера», 2011,

- 5. Sigfrid Yngvesson. Microwave Semiconductor Devices. Springer, Boston, MA. 1991.
- 6. Лебедев А. И. Физика полупроводниковых приборов. М.: ФИЗМАТЛИТ, 2008. 488 с.
- 7. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. Санкт-Петербург. «Лань», 2001
- 8. Гуртов В.А. Твердотельная электроника: Учеб. пособие 3-е изд., доп. Москва: Техносфера, 2008. 512 с.
- 9. Красников Г.Я. Конструктивно-технологические особенности субмикронных МОП-транзисторов Издание 2-е, исправленное Москва: Техносфера, 2011. 800 с.
- 10. Федоров Н.Д. Электронные, квантовые приборы и микроэлектроника. М.: Радио и связь, 1998.
- 11. Шур М.С. Современные приборы на основе арсенида галлия. М.: Мир, 1991.
- 12. Шур М. Физика полупроводниковых приборов. Москва: Мир, 1992. 479 с.
- 13. Кольцов Г.И. СВЧ-приборы и интегральные микросхемы. Раздел: Гетеробиполярные СВЧ-транзисторы. М.: МИСиС, 1998.
- 14. Кольцов Г.И. СВЧ-приборы и интегральные микросхемы. Раздел: Полевые транзисторы GaAs с затвором в виде барьера Шоттки. М.: МИСиС, 1998.
- 15. Кольцов Г.И. СВЧ-приборы и интегральные микросхемы. Раздел: Расчет параметров селективно легированного гетеротранзистора. М.: МИСиС, 1998.
- 16. Пожела Ю. Физика быстродействующих транзисторов. Вильнюс: МОКСЛАС, 1989.
- 17. Зи С.М. Физика полупроводниковых приборов. В 2-х книгах. М.: Мир, 1984.
- 18. Кольцов Г.И., Горюнов Н.Н., Юрчук С.Ю. СВЧ-приборы и интегральные микросхемы. Лабораторный практикум. М.: МИСиС, 1995.
- 19. Тагер, А.С.; Вальд-Перлов, В.М. Лавинно-пролетные диоды и их применение в технике СВЧ. Москва. «Советское радио», 1968, 480 стр
- 20. Левинштейн М. Е., Пожела Ю. К., Шур М. С. Эффект Ганна. Москва, «Советское радио», 1975, 288 с.
- 21. Иванов С.Н., Пенин Н.А., Скворцова Н.Е., Соколов Ю.Ф. Физические основы работы полупроводниковых СВЧ диодов. М.: Советское радио, 1965. 191 с
- 22. Дзехцер, Г.Б.; Орлов, О.С. Р-І-N диоды в широкополосных устройствах СВЧ. Издательство: М.: Советское радио, 200 страниц; 1970 г.
- 23. Ю.Р. Носов. Полупроводниковые импульсные диоды. Москва. Советское радио. 1965.
- 24. Вайсблат А.В. Коммутационные устройства СВЧ на полупроводниковых диодах М.: Радио и связь, 1987. 119 с.
- 25. Веселов Г.И., Егоров Е.Н., Алехин Ю.Н. и др. Микроэлектронные устройства СВЧ. Учебное пособие для радиотехнических специальностей вузов. М.: Высшая школа, 1988. 280 с.
- 26. Д.В. Ди Лоренцо, Д.Д. Канделуола. Полевые транзисторы на арсениде галлия. Принципы работы и технология изготовления. Москва. "Радио и связь", 1988.
- 27. Хауэс М., Морган Д. (ред.) Полупроводниковые приборы в схемах СВЧ Пер. с англ. д.ф.м.н. В.С. Эткин. М.: Мир, 1979. 444 с.
- 28. Ю. В. Завражнов, И. И. Каганова, Е. З. Мазель, А. И. Миркин. Мощные высокочастотные транзисторы Под ред. Е. З. Мазеля. Москва, издательство Радио и связь, 1985.— 176 с.
- 29. Проектирование и технология производства мощных СВЧ транзисторов/В. И. Никишин, Б. К. Петров, В. Ф. Сыноров и др. —М.: Радио и связь, 1989.— 144 с: ил.

Рекомендуемую литературу можно получить в библиотеке МИСиС, в бумажном и электронном виде на кафедре.