Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное** государственное автономное образовательное учреждение Дата подписания: 15.11.2023 15:38:07 высшего образования

Уникальный про**фтаціюналівный исследовател вский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Аннотация рабочей программы учебной дисциплины

Технологии материалов для радиопоглощения и электромагнитного экранирования

Закреплена за подразделением Кафедра технологии материалов электроники

Направление подготовки 11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль

Квалификация Инженер-исследователь

 Форма обучения
 очная

 Общая трудоемкость
 4 ЗЕТ

Часов по учебному плану 144 Формы контроля в семестрах:

в том числе: зачет с оценкой 11

 аудиторные занятия
 68

 самостоятельная работа
 76

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	11 (6.1)		Итого	
Недель	18			
Вид занятий	УП	РΠ	УП	РΠ
Лекции	34	34	34	34
Практические	34	34	34	34
Итого ауд.	68	68	68	68
Контактная работа	68	68	68	68
Сам. работа	76	76	76	76
Итого	144	144	144	144

УП: 11.03.04-БЭН-23_6-ПП.plx cтp. 2

	1. ЦЕЛИ ОСВОЕНИЯ
1.1	Цель – теоретическая и практическая подготовка в области технологии получения магнитодиэлектрических и ферритовых материалов для радиопоглощения и магнитного экранирования
1.2	Задачи:
1.3	1. Научить выбирать типы экранирующих и поглощающих материалов, технологические способы их получения и режимы, обеспечивающие заданный комплекс свойств.
1.4	2. Научить принципам создания композиционных ферритовых материалов для радиопоглощения
1.5	3. Научить управлению диэлектрическими и магнитными свойствами ферритовых и магнитодиэлектрических материалов с помощью технологии.
1.6	4. Научить понимать роль химического и фазового составов при получении материалов, поглощающих электромагнитную энергию (ЭМЭ).

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	
	Блок OП: Б1.В.ДВ.22	
2.1	Требования к предварительной подготовке обучающегося:	
2.1.1	Высоковакуумное оборудование в наноэлектронике	
2.1.2	Материалы и элементы спинтроники и спинволновой электроники	
2.1.3	Мессбауэровская спектроскопия материалов магнитоэлектроники и микросистемной техники	
2.1.4	Микросхемотехника	
2.1.5	Молекулярно-пучковая и МОС-гидридная технологии	
2.1.6	Неразрушающие методы контроля процессов формирования гетерокомпозиций	
2.1.7	Планирование научной деятельности	
2.1.8	Приборные структуры на некристаллических материалах	
2.1.9	Приборные структуры на широкозонных полупроводниках	
2.1.10	Приборы и устройства магнитоэлектроники	
2.1.11	Приборы и устройства на основе наносистем	
2.1.12	Программирование микроконтроллеров	
2.1.13	Производственная практика по получению профессиональных умений и опыта профессиональной деятельности	
2.1.14	Производственная практика по получению профессиональных умений и опыта профессиональной деятельности	
2.1.15	Специальные вопросы физики магнитных явлений в конденсированных средах Часть 1	
2.1.16	Технология наногетероструктур	
2.1.17	Методы математического моделирования	
2.1.18	Методы характеризации полупроводниковых материалов и структур	
2.1.19	Моделирование процессов и устройств полупроводниковой электроники	
2.1.20	Силовые полупроводниковые приборы	
2.1.21	Физика квантоворазмерных полупроводниковых композиций	
2.1.22	Физика наноструктур	
2.1.23	Физико-химия и технология наноструктур	
2.1.24	Магнитные измерения	
2.1.25	Математические модели технологических процессов получения магнитоэлектроники и радиокерамики	
2.1.26	Моделирование технологических процессов получения материалов электронной техники	
2.1.27	Наноэлектроника полупроводниковых приборов и устройств	
2.1.28	Оборудование производства ферритовых материалов и радиокерамики	
2.1.29	Основы радиационной стойкости изделий электронной техники	
2.1.30	Основы технологии электронной компонентной базы	
2.1.31	Приборы квантовой и оптической электроники	
2.1.32	Физика взаимодействия частиц и излучений с веществом	
2.1.33	Элементы и устройства магнитоэлектроники	
2.1.34	Дефекты в оптоэлектронных полупроводниковых приборах на широкозонных материалах	
2.1.35	Ионно-плазменная обработка материалов	
2.1.36	Компьютерные технологии проектирования процессов наноэлектроники	
2.1.37	Материаловедение ферритов и родственных магнитных систем	
2.1.38	Основы технологии электронной компонентной базы. Технология тонких пленок	
2.1.39	Полевые полупроводниковые приборы	

УП: 11.03.04-БЭН-23_6-ПП.plx cтp. 3

2.1.40	Полупроводниковая наноэлектроника
2.1.41	Приемники оптического излучения
2.1.42	Физика импульсного отжига
2.1.43	Физико-математические модели процессов наноэлектроники
2.1.44	Физические основы электроники
2.1.45	Функциональная наноэлектроника
2.1.46	Биполярные полупроводниковые приборы
2.1.47	Инженерная математика
2.1.48	Квантовая и оптическая электроника
2.1.49	Материаловедение полупроводников и диэлектриков
2.1.50	Технология материалов электронной техники
2.1.51	Физика диэлектриков
2.1.52	Физика магнитных явлений
2.1.53	Актуальные проблемы современной электроники и наноэлектроники
2.1.54	Физические свойства кристаллов
2.1.55	Электроника
2.1.56	Математическая статистика и анализ данных
2.1.57	Практическая кристаллография
2.1.58	Учебная практика по получению первичных профессиональных умений
2.1.59	Учебная практика по получению первичных профессиональных умений
2.1.60	Физика
2.1.61	Физическая химия
2.1.62	Математика
2.1.63	Органическая химия
2.1.64	Информатика
2.1.65	Химия
2.1.66	Аналитическая геометрия
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как
	предшествующее:
2.2.1	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.2	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.3	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.4	Преддипломная практика для выполнения выпускной квалификационной работы

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-3: Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности

Знать:

ОПК-3-32 Методы определения и расчёта электрофизических параметров материалов в цепях с распределёнными параметрами.

ОПК-3-31 Основы моделирования характеристик радиопоглощающих и экранирующих материалов и структур на основе материальных параметров составляющих их сред.

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Знать:

ПК-5-32 Взаимосвязь технологических факторов с диэлектрическими свойствами ферритов

ПК-5-31 Зависимость частотных зависимостей магнитных характеристик материала от состава и его микроструктуры

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Знать

ОПК-1-32 Взаимосвязь дисперсности ферритового порошка с его коэрцитивной силой и магнитной проницаемостью

УП: 11.03.04-БЭН-23 6-ПП.plx cтp. 4

ОПК-1-31 Технологии получения магнитодиэлектрических материалов

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Уметь:

ПК-5-У2 Создавать ферритовые материалы с заданным уровнем обобщённо-диэлектрических и магнитных потерь.

ПК-5-У1 Управлять диэлектрическими свойствами с помощью технологии.

ОПК-3: Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности

Уметь:

ОПК-3-У2 Анализировать влияние добавок на параметры микроструктуры и свойства ферритов.

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Уметь:

ОПК-1-У2 Выбирать составы и технологические схемы изготовления магнитодиэлектриков и ферритов различного назначения. Создавать ферритовые материалы с заданным уровнем магнитных потерь.

ОПК-1-У1 Рассчитывать характеристики радиопоглощающих и экранирующих материалов на основе данных частотных зависимостей диэлектрической и магнитной проницаемостей.

ОПК-3: Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности

Уметь:

ОПК-3-У1 Рассчитывать характеристики радиопоглощающих и экранирующих материалов на основе данных частотных зависимостей диэлектрической и магнитной проницаемостей

ПК-5: Способность проводить анализ и выбор перспективных технологических процессов при производстве изделий микроэлектроники

Владеть:

ПК-5-В1 Владеть информацией о современных способах получения радиопоглощающих материалов

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Владеть:

ОПК-1-В2 Навыками оценки свойств полуфабрикатов на разных стадиях технологического процесса

ОПК-1-В1 Навыками определения электрофизических параметров материалов в ВЧ и СВЧ диапазонах.

ОПК-3: Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информацион из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности

Владеть:

ОПК-3-В1 Навыками расчёта характеристик радиопоглощающих и экранирующих материалов на основе данных частотных зависимостей диэлектрической и магнитной проницаемостей