Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное государственное автономное образовательное учреждение** Дата подписания: 21.09.2023 14:39:31 **высшего образования**

Уникальный про**фтациональный исследовател ьский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Аннотация рабочей программы учебной дисциплины

Проектирование и технология электронной компонентной базы

Закреплена за подразделением Кафедра ППЭ и ФПП

Направление подготовки 11.04.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль Материалы и технологии магнитоэлектроники

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 3 ЗЕТ

Часов по учебному плану 108 Формы контроля в семестрах:

в том числе: зачет с оценкой 3

 аудиторные занятия
 34

 самостоятельная работа
 74

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	3 (2.1)		Итого	
Недель	19			
Вид занятий	УП	РΠ	УП	РΠ
Лекции	17	17	17	17
Практические	17	17	17	17
Итого ауд.	34	34	34	34
Контактная работа	34	34	34	34
Сам. работа	74	74	74	74
Итого	108	108	108	108

УП: 11.04.04-MЭH-23-1.plx стр.

1. ЦЕЛИ ОСВОЕНИЯ

1.1 Целью освоения дисциплины является формирование у студентов компетенций в соответствие с учебным планом обучения магистров по направлению 11.04.04 "Электроника и наноэлектроника", позволяющих эффективно выбирать методы и средства проектирования электронной компонентной базы и технологические процессы производства больших интегральных схем.

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ				
	Блок OП: Б1.B				
2.1	Требования к предварительной подготовке обучающегося:				
2.1.1	Компьютерные технологии в научных исследованиях				
2.1.2	Материалы и элементы спинтроники и спинволновой электроники				
2.1.3	Мессбауэровская спектроскопия материалов магнитоэлектроники и микросистемной техники				
2.1.4	Метрология, стандартизация и сертификация наноструктур				
2.1.5	Научно-исследовательская практика				
2.1.6	Специальные вопросы физики магнитных явлений в конденсированных средах. Часть 2				
2.1.7	Физико-химия и технология наноструктур				
2.1.8	Актуальные проблемы современной электроники и наноэлектроники				
2.1.9	Методы математического моделирования				
2.1.10	Основы технологии углеродных наноматериалов				
2.1.11	Современные методы диагностики и исследования наногетероструктур				
2.1.12	Специальные вопросы физики магнитных явлений в конденсированных средах. Часть 1				
2.1.13	Технологии материалов для радиопоглащения и электромагнитного экранирования				
2.1.14	Физика квантоворазмерных полупроводниковых композиций				
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как				
	предшествующее:				
2.2.1	Подготовка к процедуре защиты и защита выпускной квалификационной работы				
2.2.2	Преддипломная практика				

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Знать:

ОПК-4-31 Основы проектирования и разработки необходимого программно-математического обеспечения для использования в ходе проведения исследований и решения задач в области технологии электронной компонентной базы

ПК-2: Способность оптимизировать параметры технологических операций

Знать:

ПК-2-31 Основные закономерности влияния технологических факторов на характеристики составляющих электронной компонентной базы

ПК-1: Способность разрабатывать технологические процессы и внедрение их в производство

Знать

ПК-1-31 Существующие технологические маршруты производства интегральных схем различной элементной базы и назначения

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Знать:

УК-1-31 Основные технологические методы создания электронной элементной базы

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Знать:

ПК-3-31 Основные методы оценки качества технологических процессов

ПК-2: Способность оптимизировать параметры технологических операций

УП: 11.04.04-МЭН-23-1.plx стр.

Уметь:

ПК-2-У1 Вносить изменения в существующий технологический процесс производства изделий электронной компонентной базы с целью его оптимизации

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Уметь:

ПК-3-У1 Проводить экспериментальные исследования по оценки качества технологических процессов

ПК-1: Способность разрабатывать технологические процессы и внедрение их в производство

Уметь:

ПК-1-У1 Оптимизировать режимы проведения технологических операций производства изделий электронной техники

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Уметь:

ОПК-4-У1 Применять разработанное программное обеспечение для проектирования элементов интегральных схем

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Уметь:

УК-1-У1 Создавать технологические маршруты создания электронной компонентой базы

Владеть:

УК-1-В1 Владеть топологическим САПР

ПК-3: Способность проводить экспериментальные работы и осваивать новые технологические процессы

Владеть:

ПК-3-В1 Методами оценки качества технологических процессов

ПК-1: Способность разрабатывать технологические процессы и внедрение их в производство

Владеть:

ПК-1-В1 Программными средствами численного проектирования элементной базы

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Владеть:

ОПК-4-В1 Методами исследования характеристик разработанных с использованием специализированного программноматематического обеспечения элементов электронной компонентой базы

ПК-2: Способность оптимизировать параметры технологических операций

Владеть:

ПК-2-В1 Методами оценки эффективности существующих технологических операции изготовления изделий микроэлектроники