Документ полтисан простой алектронной полтиской и ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо Федеральное посударственное автономное образовательное учреждение Дата подписания: 15.11.2023 15:38:07

высшего образования

Уникальный профрациональный исследовательский технологический университет «МИСИС»

d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Аннотация рабочей программы учебной дисциплины

Физика импульсного отжига

Закреплена за подразделением

Кафедра ППЭ и ФПП

Направление подготовки

11.03.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль

Квалификация Инженер-исследователь

Форма обучения очная Общая трудоемкость **33ET**

Часов по учебному плану 108 Формы контроля в семестрах:

в том числе: зачет с оценкой 7

51 аудиторные занятия 57 самостоятельная работа

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	7 (4.1)		Итого	
Недель	18			
Вид занятий	УП	РΠ	УП	РΠ
Лекции	17	17	17	17
Лабораторные	17	17	17	17
Практические	17	17	17	17
Итого ауд.	51	51	51	51
Контактная работа	51	51	51	51
Сам. работа	57	57	57	57
Итого	108	108	108	108

	1. ЦЕЛИ ОСВОЕНИЯ
	Целью освоения дисциплины является формирование у студентов компетенций в соответствие с учебным планом по направлению 11.03.04 в области электроники и наноэлектроники, дающих общие представления о принципами функционирования лучевых импульсных источников, основных направлениях применения импульсного излучения (квантового, корпускулярного) в разработке и производстве электронных приборных структур.
1.2	

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
	Блок ОП: Б1.В.ДВ.06					
2.1	Требования к предварительной подготовке обучающегося:					
2.1.1	Биполярные полупроводниковые приборы					
2.1.2	Инженерная математика					
2.1.3	Материаловедение полупроводников и диэлектриков					
2.1.4	Технология материалов электронной техники					
2.1.5	Физика диэлектриков					
2.1.6	Физика конденсированного состояния					
2.1.7	Актуальные проблемы современной электроники и наноэлектроники					
2.1.8	Статистическая физика					
2.1.9	Физические свойства кристаллов					
2.1.10	Методы математической физики					
2.1.11	Основы квантовой механики					
2.1.12	Практическая кристаллография					
2.1.13	Учебная практика по получению первичных профессиональных умений					
2.1.14	Учебная практика по получению первичных профессиональных умений					
2.1.15	Физика					
2.1.16	Физическая химия					
2.1.17	Электротехника					
2.1.18	Математика					
2.1.19	Органическая химия					
2.1.20	Информатика					
2.1.21	Химия					
2.1.22	Аналитическая геометрия Инженерная и компьютерная графика					
2.1.23	Квантовая и оптическая электроника					
2.1.24	Физика магнитных явлений					
2.1.26	Актуальные проблемы современной электроники, наноэлектроники и магнитоэлектроники					
2.1.20	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как					
2.2	предшествующее:					
2.2.1	Вакуумная и плазменная электроника					
2.2.2	Квантоворазмерные структуры в наноэлектронике					
2.2.3	Наноэлектроника полупроводниковых приборов и устройств					
2.2.4	Основы технологии электронной компонентной базы					
2.2.5	Приборы квантовой и оптической электроники					
2.2.6	Методы характеризации полупроводниковых материалов и структур					
2.2.7	Моделирование процессов и устройств полупроводниковой электроники					
2.2.8	Силовые полупроводниковые приборы					
2.2.9	Современные методы диагностики и исследования наногетероструктур					
2.2.10	Физика наноструктур					
2.2.11	Микросхемотехника					
2.2.12	Приборные структуры на некристаллических материалах					
2.2.13	Приборные структуры на широкозонных полупроводниках					
2.2.14	Технология наногетероструктур					
2.2.15	Оборудование для производства наногетероструктурных солнечных элементов					

УП: 11.03.04-БЭН-23_6-ПП.plx стр. 3

2.2.16	Основы надежности элементной базы электроники в условиях ионизирующего излучения космического пространства
2.2.17	Радиационно-технологические процессы в электронике
2.2.18	Физика СВЧ полупроводниковых приборов
2.2.19	Электронные и оптические свойства широкозонных соединений А2В6
2.2.20	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.21	Подготовка к процедуре защиты и защита выпускной квалификационной работы
2.2.22	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.23	Преддипломная практика для выполнения выпускной квалификационной работы
2.2.24	Магнитные измерения
2.2.25	Математические модели технологических процессов получения магнитоэлектроники и радиокерамики
2.2.26	Моделирование технологических процессов получения материалов электронной техники
2.2.27	Оборудование производства ферритовых материалов и радиокерамики
2.2.28	Процессы вакуумной и плазменной электроники
2.2.29	Технология производства ферритовых материалов и радиокерамики
2.2.30	Методы математического моделирования
2.2.31	Физика квантоворазмерных полупроводниковых композиций
2.2.32	Физико-химия и технология наноструктур
2.2.33	Мессбауэровская спектроскопия материалов магнитоэлектроники и микросистемной техники
2.2.34	Молекулярно-пучковая и МОС-гидридная технологии
2.2.35	Приборы и устройства на основе наносистем
2.2.36	Специальные вопросы физики магнитных явлений в конденсированных средах Часть 1
2.2.37	Конструирование светоизлучающих устройств
2.2.38	Магнитные наносистемы, наноматериалы и нанотехнологии
2.2.39	Технологии материалов для радиопоглащения и электромагнитного экранирования
2.2.40	Физика и техника магнитной записи
2.2.41	Электроника органических полупроводников (материалы, технологии, приборы)

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Знать:

ОПК-1-31 Основы математического анализа для расчета режимов проведения импульсных обработок полупроводниковых материалов и приборов.

ПК-3: Способность проводить предварительные измерения опытных образцов изделий электронной техники

Знать:

- ПК-3-31 Основные закономерности изменения характеристик различных материалов и приборных структур при проведении импульсного отжигав различных режимах
- ПК-3-32 Специфику поведения имплантированной примеси в приповерхностной области полупроводника при проведении импульсных обработок
- УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Знать

- УК-1-31 Принципы поиска и анализа необходимой информации для проведения исследований влияния импульсного излучения на параметры полупроводниковых структур.
- ПК-3: Способность проводить предварительные измерения опытных образцов изделий электронной техники

Уметь:

- ПК-3-У1 Выполнять расчеты распределения температурных полей в полупроводниках при импульсном отжиге;
- УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Уметь:

УК-1-У1 Анализировать полученную информацию для оптимизации режимов проведения импульсного отжига с целью

УП: 11.03.04-БЭН-23 6-ПП.рlх стр.

управления параметрами приборных структур.

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Уметь:

ОПК-1-У1 Применять методики расчета температурных полей в полупроводниках при проведении технологических операций с использованием импульсного излучения.

ПК-3: Способность проводить предварительные измерения опытных образцов изделий электронной техники

Влалеть:

ПК-3-В1 Методами измерения характеристик материалов и параметров приборов при воздействии импульсного излучения;

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Владеть:

ОПК-1-В1 Владеть навыками оценки результатов исследований влияния импульсного излучения на полупроводниковые материалы и структуры с использованием методов математической статистики

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, умение анализировать процессы и системы с использованием соответствующих аналитических, вычислительных и экспериментальных методов, применять системный подход для решения поставленных задач

Владеть:

УК-1-В1 Иметь навыки прогнозирования поведения параметров полупроводниковых приборов и ИС при проведении импульсных обработок.