Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное государственное автономное образовательное учреждение** Дата подписания: 31.07.2023 14:28:11 **высшего образования**

Уникальный профрациональный исследовательский технологический университет «МИСИС»

d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Аннотация рабочей программы учебной дисциплины

Компьютерные технологии в научных исследованиях

Закреплена за подразделением Кафедра материаловедения полупроводников и диэлектриков

Направление подготовки 11.04.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

Профиль Технологии микро- и наноэлектроники

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 3 ЗЕТ

Часов по учебному плану 108 Формы контроля в семестрах:

в том числе: зачет с оценкой 2

 аудиторные занятия
 34

 самостоятельная работа
 74

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	2 (1.2)		Итого	
Недель	18			
Вид занятий	УП	РΠ	УП	РΠ
Практические	34	34	34	34
Итого ауд.	34	34	34	34
Контактная работа	34	34	34	34
Сам. работа	74	74	74	74
Итого	108	108	108	108

УП: 11.04.04-MЭH-22-3.plx cтр.

	1. ЦЕЛИ ОСВОЕНИЯ				
1.1	Цель — научить использовать регрессионные модели, сплайны и численное интегрирование для обработки результатов научных исследований.				
1.2	Задачи дисциплины:				
1.3	1. Научить работе с числами с плавающей точкой (в нотации согласно международному стандарту IEEE 754);				
1.4	2. Научить использовать линейную и нелинейную регрессии для обработки результатов научных экспериментов и технологических процессов;				
1.5	3. Научить использовать различные виды сплайнов для обработки результатов научных исследований;				
1.6	4. Научить методам численного интегрирования.				

2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
Блок ОП:		Б1.О			
2.1	Требования к предварительной подготовке обучающегося:				
2.1.1	Актуальные проблемы современной электроники и наноэлектроники				
2.1.2	Конструирование светоизлучающих устройств				
2.1.3	Конструирование фотопреобразователей				
2.1.4	Методы математического моделирования				
2.1.5	Современные методы диагностики и исследования наногетероструктур				
2.1.6	Физика квантоворазмерных полупроводниковых гетерокомпозиций				
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:				
2.2.1	Высоковакуумное оборудование в наноэлектронике				
2.2.2	Приборы и устройства магнитоэлектроники				
2.2.3	Приборы и устройства на основе наносистем				
2.2.4	Проектирование и технология электронной компонентной базы				
2.2.5	Технология материалов экстремальной электроники				
2.2.6	Элионная технология в микро- и наноиндустрии				
2.2.7	Подготовка к процедуре защиты и защита выпускной квалификационной работы				
2.2.8	Преддипломная практика				

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Знать:

ОПК-4-31 Основные положения международного стандарта IEEE 754, описывающего компьютерное представление чисел с плавающей точкой

ОПК-4-32 Математический аппарат методов регрессионного анализа

ОПК-4-33 Способы анализа экспериментальных данных при помощи сплайнов

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Знать:

УК-1-32 Основные пакеты компьютерной алгебры, в том числе распространяемые бесплатно, их возможности и ограничения

УК-1-31 Математические основы численного интегрирования, применяемого при решении практических задач

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Уметь:

ОПК-4-У2 Моделировать физические явления, результаты научных экспериментов и технологических процессов в области материаловедения полупроводников и диэлектриков в компьютерной среде GNU Octave

УП: 11.04.04-MЭH-22-3.plx стр. 3

ОПК-4-У1 Применять числа с плавающей точкой в компьютерных расчетах и минимизировать вносимую использованием таких чисел ошибку вычислений

ОПК-4-УЗ Использовать линейные и нелинейные регрессионные модели для анализа экспериментальных данных

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Уметь:

УК-1-У2 Работать со справочной литературой и другими информационными и нормативными материалами в области компьютерных и информационных технологий

УК-1-У1 Описывать экспериментальные данные при помощи сплайнов; производить численное интегрирование различными методами

ОПК-4: Способен проектировать, разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач в условиях неопределенности и альтернативных решений в рамках междисциплинарных областей

Владеть:

ОПК-4-В1 Навыками использования компьютерной среды GNU Octave для моделирования физических явлений, построения регрессионных моделей, сплайнов и численного интегрирования наборов экспериментальных данных.

ОПК-4-В2 Навыками использования чисел с плавающей точкой в компьютерных вычислениях

УК-1: Способен осуществлять критический анализ новых и сложных инженерных объектов, процессов и систем в междисциплинарном контексте, проблемных ситуаций на основе системного подхода, выбрать и применить наиболее подходящие и актуальные методы из существующих аналитических, вычислительных и экспериментальных методов или новых и инновационных методов, вырабатывать стратегию действий

Владеть:

УК-1-В2 Методами сбора экспериментальных данных с целью их корректной математической обработки

УК-1-В1 Алгоритмами численного интегрирования и дифференцирования, регрессионным анализом, навыками использования интерполяционных сплайнов в описании полученных экспериментальных данных

УП: 11.04.04-МЭН-22-3.plx стр. 4