Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Исаев Игорь Магомедович

Должность: Проректо **Редеральное** государственное автономное образовательное учреждение Дата подписания: 31.08.2023 11:27:20 высшего образования

Уникальный про**фрациональный исследовательский технологический университет «МИСИС»** d7a26b9e8ca85e98ec3de2eb454b4659d061f249

Рабочая программа дисциплины (модуля)

Аморфные, микро- и нанокристаллические материалы

Закреплена за подразделением Кафедра физического материаловедения

Направление подготовки 22.04.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ

Профиль Физика и технологии функциональных материалов

 Квалификация
 Магистр

 Форма обучения
 очная

 Общая трудоемкость
 4 ЗЕТ

Часов по учебному плану 144 Формы контроля в семестрах:

в том числе: экзамен 3

 аудиторные занятия
 34

 самостоятельная работа
 74

 часов на контроль
 36

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	3 (2.1)		Итого	
Недель	1	9		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	17	17	17	17
Практические	17	17	17	17
Итого ауд.	34	34	34	34
Контактная работа	34	34	34	34
Сам. работа	74 74		74	74
Часы на контроль	36 36		36	36
Итого	144	144	144	144

Программу составил(и):

кфмн, доцент, Шуваева Е.А.

Рабочая программа

Аморфные, микро- и нанокристаллические материалы

Разработана в соответствии с ОС ВО:

Самостоятельно устанавливаемый образовательный стандарт высшего образования - магистратура Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» по направлению подготовки 22.04.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ (приказ от 05.03.2020 г. № 95 о.в.)

Составлена на основании учебного плана:

22.04.01 Материаловедение и технологии материалов, 22.04.01-ММТМ-23-7.plx Физика и технологии функциональных материалов, утвержденного Ученым советом НИТУ МИСИС в составе соответствующей ОПОП ВО 22.06.2023, протокол № 5-23

Утверждена в составе ОПОП ВО:

22.04.01 Материаловедение и технологии материалов, Физика и технологии функциональных материалов, утвержденной Ученым советом НИТУ МИСИС 22.06.2023, протокол № 5-23

Рабочая программа одобрена на заседании

Кафедра физического материаловедения

Протокол от 18.04.2023 г., №8-04

Руководитель подразделения Савченко А.Г.

1. ПЕЛИ ОСВОЕНИЯ

1.1 Цель освоения дисциплины - формирование компетенций в соответствии с учебным планом, а также научить современным представлениям о формировании функциональных характеристик аморфных, нанокристаллических и микрокристаллических материалов с особыми физическими свойствами, о материаловедческих проблемах формирования в них оптимальных эксплуатационных характеристик и о физико-химических аспектах процессов и явлений, протекающих в этих материалах.

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ				
	Блок ОП:	Б1.В.ДВ.03			
2.1	Требования к предвар	ительной подготовке обучающегося:			
2.1.1	Математическое и комп	пьютерное моделирование материалов и процессов			
2.1.2	Производственная прав	стика			
2.1.3	Технологии получения материалов				
2.1.4	Материаловедение и технологии перспективных материалов				
2.1.5	Метрология и испытан	ия функциональных материалов			
2.1.6	Учебная практика				
2.2	Дисциплины (модули) предшествующее:) и практики, для которых освоение данной дисциплины (модуля) необходимо как			
2.2.1	Подготовка к процедур	е защиты и защита выпускной квалификационной работы			
2.2.2	Преддипломная практи	ка			

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

ПК-2: Способен анализировать технологии получения, обработки материалов и изделий из них, формулировать рекомендации по повышению конкурентоспособности выпускаемой продукции

Знать:

ПК-2-33 Методы проведения структурного анализа аморфных, микро- и нанокристаллических материалов

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Знать:

ПК-1-33 Технологические возможности, особенности эксплуатации и экономические характеристики термического оборудования, реализующего типовые режимы термической и химико-термической обработки

ПК-2: Способен анализировать технологии получения, обработки материалов и изделий из них, формулировать рекомендации по повышению конкурентоспособности выпускаемой продукции

Знать:

ПК-2-31 Локальные нормативные акты по нагревательному, электрическому, контрольно-измерительному оборудованию, применяемому в термическом производстве

ПК-2-32 Способы и средства текущего контроля технологических факторов типовых режимов термической обработки

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Знать:

ПК-1-32 Технологические возможности типовых режимов термической и химико-термической обработки аморфных, микро- и нанокристаллических сплавов

ОПК-2: Способен разрабатывать научно-техническую, проектную и служебную документацию, оформлять научнотехнические отчеты, обзоры, публикации, рецензии, проектировать и разрабатывать продукцию, процессы и системы, соответствующие направлению подготовки

Знать:

ОПК-2-31 Основные положения нормативных документов, касающихся подготовки и выполнения технических заданий на выполнение измерений, испытаний, научно-исследовательских и опытно-конструкторских работ; оформления научно-технических отчетов

ПК-2: Способен анализировать технологии получения, обработки материалов и изделий из них, формулировать рекомендации по повышению конкурентоспособности выпускаемой продукции

Знать:

ПК-2-34 Методы определения эксплуатационных свойств деталей и инструментов

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Знать:

ПК-1-31 Правила работы с электронной конструкторско-технологической информацией

ПК-2: Способен анализировать технологии получения, обработки материалов и изделий из них, формулировать рекомендации по повышению конкурентоспособности выпускаемой продукции

Уметь:

ПК-2-У2 Устанавливать причины отклонений эксплуатационных свойств деталей и инструмента от заданных параметров и предлагать меры к их устранению

ПК-2-У1 Производить структурный анализ аморфных, микро- и нанокристаллических материалов

ОПК-2: Способен разрабатывать научно-техническую, проектную и служебную документацию, оформлять научнотехнические отчеты, обзоры, публикации, рецензии, проектировать и разрабатывать продукцию, процессы и системы, соответствующие направлению подготовки

Уметь:

ОПК-2-У1 Оформлять отчеты по результатам выполнения расчетов и анализа различных свойств аморфных, микро- и нанокристаллических материалов

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Уметь:

ПК-1-У1 Анализировать различную, в том числе и конструкторскую, документацию на детали машин и приборов, на инструменты, подвергаемые типовым технологическим процессам термической и других видов обработки

ПК-1-УЗ Выбирать технологическое оборудование для реализации типовых режимов термической и других видов обработки аморфных микро- и нанокристаллических материалов

ПК-1-У2 Формулировать предложения по изменению конструктивных требований к эксплуатационным свойствам в целях более эффективной реализации возможностей материалов или термической и других видов обработки обработки

ПК-2: Способен анализировать технологии получения, обработки материалов и изделий из них, формулировать рекомендации по повышению конкурентоспособности выпускаемой продукции

Владеть:

ПК-2-В1 Навыками планирования периодического контроля технологических факторов типовых режимов термической обработки аморфных, микро- и нанокристаллических материалов

ПК-2-ВЗ Навыками установления причин отклонений эксплуатационных свойств аморфных материалов от заданных параметров по данным измерений и исследований различных свойств и структуры

ПК-2-В2 Навыками проведения контроля результатов типовых режимов термической обработки аморфных материалов по данным измерений физических свойств

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Владеть:

ПК-1-В1 Навыками выбора металлических аморфных, микро- и нанокристаллических материалов для деталей машин, приборов и инструмента

ОПК-2: Способен разрабатывать научно-техническую, проектную и служебную документацию, оформлять научнотехнические отчеты, обзоры, публикации, рецензии, проектировать и разрабатывать продукцию, процессы и системы, соответствующие направлению подготовки

Владеть:

ОПК-2-В1 Навыками оформления научно-технической документации на результаты научно-исследовательской деятельности

ПК-1: Способен обоснованно использовать знания о типовых технологических процессах, участвовать в разработке технологических процессов производства и обработки материалов и изделий из них в области материаловедения и технологии материалов

Владеть:

ПК-1-ВЗ Навыками внесения предложений по изменению требований к эксплуатационным свойствам в целях более эффективной реализации возможностей аморфного, микро- или нанокристаллического материала или термической обработки

ПК-1-В2 Навыками выбора способа термической другой обработки аморфных, микро- и нанокристаллических материалов

для получения необходимых свойств

	4. СТРУКТУРА И СОДЕРЖАНИЕ							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы
	Раздел 1. Структура и свойства аморфных сплавов. Применение аморфных материалов							
1.1	Основные модели структур аморфного состояния /Лек/	3	2	ПК-2-33	Л1.2 Л1.6 Л1.9Л2.3 Л2.4			
1.2	Представления о дефектах аморфной фазы /Лек/	3	2	ПК-1-32 ПК-2- 33	Л1.2 Л1.6 Л1.8 Л1.9 Л1.11 Л1.12Л2.4			
1.3	Экспериментальные методы изучения атомной структуры аморфных сплавов /Лек/	3	2	ОПК-2-31 ПК- 1-31 ПК-2-31 ПК-2-32 ПК-2- 33	Л1.9 Л1.11Л2.3 Л2.4 Э2 Э3 Э4			
1.4	Особенности физических и механических свойств аморфных материалов /Лек/	3	2	ПК-1-32 ПК-1- 33 ПК-2-32 ПК-2-34	Л1.2 Л1.11 Л1.12Л2.3 Л2.4			
1.5	Применение аморфных материалов /Лек/	3	2	ОПК-2-31 ПК- 1-31 ПК-1-32 ПК-1-33 ПК-2- 31 ПК-2-32 ПК-2-33 ПК-2- 34	Л1.11 Л1.12Л2.3 Л2.4 Э1			
1.6	Сопоставление данных различных исследований с расчетными данными о функции радиального распределения атомов, полученных исходя из различных известных моделей аморфной структуры. /Пр/	3	2	ОПК-2-У1 ПК -2-У1	Л1.9Л3.1 ЭЗ Э4			P1
1.7	Модели структур аморфного состояния. Характеристика аморфизирующихся металлических систем. Сплавы металл-металлоид, металл-металл. Особенности структуры реальных аморфных материалов. /Пр/	3	2	ПК-1-У2 ПК-1 -У3 ПК-1-В1 ПК-1-В2 ПК-2 -У2	Л1.6 Л1.8 Л1.9			P2
1.8	Механические, электрические, тепловые и магнитные свойства аморфных материалов. Магнитомягкие, инварные и элинварные аморфные сплавы. /Пр/	3	4	ОПК-2-У1 ПК -1-У2 ПК-1-У3 ПК-1-В1 ПК-1 -В2 ПК-1-В3 ПК-2-У2 ПК-2 -В2 ПК-2-В3	Л1.11 Л1.12 Э4 Э5 Э6 Э7			P3
1.9	Перспективы применения аморфных материалов. Положительные и отрицательные качества аморфных материалов /Пр/	3	4	ПК-1-У1 ПК-1 -У2 ПК-1-У3 ПК-1-В1 ПК-1 -В2 ПК-1-В3 ПК-2-У2 ПК-2 -В1 ПК-2-В2 ПК-2-В3	Л1.1 Л1.11 Л1.12 Э1 Э4 Э5 Э6			P4

	1		1				
1.10	Контрольная работа на тему: Структура и свойства аморфных сплавов /Пр/	3	1	ОПК-2-У1 ОПК-2-В1 ПК- 1-31 ПК-1-32 ПК-1-33 ПК-1- У1 ПК-1-У2 ПК-1-У3 ПК-2- -32 ПК-2-33 ПК-2-34 ПК-2- У1 ПК-2-У2	Л1.2 Л1.6 Л1.8 Л1.9 Л1.11 Л1.12Л3.3 Л3.4 Э1 Э2 Э3 Э4 Э5 Э6 Э7	KM1	P5
1.11	Подготовка к практическим занятиям по структуре и свойствам аморфных сплавов. Выполнение домашнего задания 1 /Ср/	3	24	ОПК-2-У1 ОПК-2-В1 ПК- 1-31 ПК-1-У1 ПК-1-У2 ПК-1 -У3 ПК-2-33 ПК-2-У1	Л1.1 Л1.2 Л1.6 Л1.8 Л1.9 Л1.11 Л1.12Л3.1Л3 .3 Л3.4 Э1 Э2 Э3 Э4 Э5 Э6 Э7		P8
	Раздел 2. Особенности микроструктуры нано- и микрокристаллических материалов, влияние технологических факторов на качество материалов при их получении.						
2.1	Особенности атомной и микроструктуры нанокристаллических материалов /Лек/	3	2	ПК-1-32 ПК-2- 32 ПК-2-33	Л1.2 Л1.3 Л1.10Л2.1Л3 .1 Л3.2		
2.2	Представления о концентрационном переохлаждении жидкости при положительном градиенте температур и его влияние на формирование структуры микрокристаллических материалов. Особенности структуры /Лек/	3	2	ОПК-2-31 ПК- 1-31 ПК-1-32 ПК-1-33 ПК-2- 31 ПК-2-32 ПК-2-33	Л1.2 Л1.1 Л1.4 Л1.5 Л1.7Л2.1		
2.3	Влияние технологических факторов на качество нано- и микрокристаллических материалов /Пр/	3	2	ОПК-2-У1 ОПК-2-В1 ПК- 1-У1 ПК-1-У2 ПК-1-У3 ПК-1 -В1 ПК-1-В2 ПК-1-В3 ПК-2 -У1 ПК-2-У2 ПК-2-В1 ПК-2 -В2 ПК-2-В3	Л1.2 Л1.4 Л1.5 Л1.7 Л1.10Л3.2 Э1 Э2 Э3 Э4 Э5 Э6 Э7		P6
2.4	Подготовка к практическому занятию о влиянии технологических факторов на качество нанои микрокристаллических материалов. Выполнение домашнего задания 2 /Ср/	3	25	ОПК-2-У1 ОПК-2-В1 ПК- 1-У1 ПК-1-У2 ПК-1-У3 ПК-1 -В1 ПК-1-В2 ПК-1-В3 ПК-2 -У1 ПК-2-У2 ПК-2-В1 ПК-2 -В2 ПК-2-В3	Л1.2 Л1.1 Л1.3 Л1.4 Л1.5 Л1.7 Л1.10Л2.1Л3 .1 Л3.2 Л3.3 Л3.4 Э1 Э2 Э3 Э4 Э5 Э6 Э7		Р9
	Раздел 3. Свойства нанокристаллических и микрокристаллических материалов. Области применения						
3.1	Свойства и применение нанокристаллических материалов - основные направления использования /Лек/	3	2	ОПК-2-31 ПК- 1-31 ПК-1-32 ПК-2-32 ПК-2- 34	Л1.2 Л1.3 Л1.4 Л1.7Л2.1 Л2.3 Э1		

3.2	Свойства и применение магнитно-мягких микрокристаллических материалов /Лек/	3	1	ОПК-2-31 ПК- 1-31 ПК-1-32 ПК-1-33 ПК-2- 31 ПК-2-32 ПК-2-34	Л1.2 Л1.5 Э1		
3.3	Контрольная работа на тему: Применение аморфных, нано- и микрокристаллических материалов /Пр/	3	2	ОПК-2-В1 ПК- 1-В1 ПК-1-В2 ПК-1-В3 ПК-2 -В1 ПК-2-В2 ПК-2-В3	Л1.1 Л1.2 Л1.4 Л1.5 Л1.6 Л1.7 Л1.11 Л1.12Л2.1 Л2.3 Л2.4Л3.2	KM2	P7
3.4	Подготовка домашнего задания 3 по свойствам и применении нано- и микрокристаллических материалов /Ср/	3	25	ОПК-2-У1 ОПК-2-В1 ПК- 1-У1 ПК-1-У2 ПК-1-В1 ПК-1 -В2 ПК-1-В3 ПК-2-У2 ПК-2 -В1 ПК-2-В2 ПК-2-В3	Л1.1 Л1.2 Л1.4 Л1.5 Л1.7 Л1.10Л1.1Л3 .3 Л3.4 Э1 Э2 Э3 Э4 Э5 Э6 Э7		P10

	5. ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ						
:	5.1. Контрольные мероприятия (контрольная работа, тест, коллоквиум, экзамен и т.п), вопросы для самостоятельной подготовки						
Код КМ	Контрольное мероприятие	Проверяемые индикаторы компетенций	Вопросы для подготовки				
KM1	Контрольная работа №1	ПК-1-31;ПК-1- 32;ПК-1-33;ПК-1- У2;ПК-1-У3;ПК-2- У1;ПК-2-У2;ПК-2- 32;ПК-2-33;ПК-2- 34	1. Особенности строения аморфных сплавов. 2. Методы исследования аморфного состояния. Сопоставление данных различных исследований с расчетными данными о функции радиального распределения атомов, полученных исходя из различных известных моделей аморфной структуры 3. Способы получения материалов в аморфном состоянии (осаждение из газовой фазы, закалка из жидкого состояния, методы получения аморфного состояния из кристаллического состояния: метод ионной имплантации, методсэндвичей, механохимический синтез) 4. Характеристика аморфизирующихся металлических систем. Сплавы металл-металлоид, металл-металл. Критерии оценки склонности к аморфизации в металлических системах. Структурные критерии, термодинамический критерий. 5. Особенности структуры реальных аморфных материалов. Дефекты аморфной структуры (квазиточечные дефекты, концепция п-, р-, тау-дефектов, дефекты субмикрокристаллического масштаба – квазидислокационные дефекты, дефекты дисклинационного типа и др.). Возможное влияние дефектности на различные физические свойства аморфных материалов. 6. Изменение объема и теплоемкости аморфной фазы в результате структурной релаксации и в районе температур стеклования и кристаллизации. 7. Влияние процессов структурной релаксации на термическое расширение и теплоемкость аморфных сплавов. Релаксация напряжений и явление охрупчивания в аморфных сплавов, элинварный и инварный эффекты. Влияние структурной релаксации на упругие и механические свойства аморфной фазы. 9. Теоретические представления об электрических свойствах аморфной фазы (теория Займана). Особенности электросопротивления аморфных сплавов. Влияние структурной релаксации на электросопротивление. Кроссовер-эффект.				

КМ2	Контрольная	ОПК-2-31;ПК-1-	1. Факторы определяющие высокий уровень магнитных свойств
10012	работа №2	31;ПК-1-32;ПК-1-	ферромагнитных аморфных сплавов. Особенности
	pa00141122	33;ПК-1-У1;ПК-1-	доменной структуры аморфных сплавов, полученных в виде лент и
		У2;ПК-1-У3;ПК-2-	в виде проводов. Влияние процессов структурной
		31;ПK-2-32;ПK-2-	релаксации на формирование магнитных свойств аморфных
		33;ПК-2-34;ПК-2-	сплавов.
		У1;ПК-2-У2	2. Инварные и элинварные аморфные сплавы. Перспективы
		y 1,11K-2-y 2	применения аморфных материалов в качестве
			материалов с особыми упругими и тепловыми свойствами.
			3. Влияние технологических факторов на качество нано- и
			микрокристаллических материалов.
			4. Формирование микрокристаллической структуры посредством
			рекристаллизации и фазовых превращений.
			5. Магнитно-мягкие сплавы типа ФАЙНМЕТ.
			6. Наноструктурные полупроводники
			7. Микрокристаллические магнитно-мягкие материалы (сплавы
			типа сендаст, сплавы системы Fe-Si, сплавы Fe-Co,
			Fe-Al, Fe-Ni)
			8. Микрокристаллические сплавы как материалы высокого
			демпфирования.
			9. Быстрозакаленные магнитотвердые материалы системы Nd-Fe-B
			10. Методы получения материалов с нано- и
			микрокристаллической структурами. Технологические факторы,
			влияющие на уровень свойств и дальнейшее применение микро- и
			нанокристаллических материалов
			11. Особенности микроструктуры нано- и микрокристаллических
			материалов. Выбор параметров структуры с точки
			зрения необходимого уровня эксплуатационных свойств

KM3	Экзамен	ОПК-2-31;ПК-1-	1. Опишите основные методы получения аморфного состояния
-		31;ПК-1-32;ПК-1-	(спиннингованием струи расплава; методом экстракции расплава.;
		33;ПК-2-31;ПК-2-	методом Улитовского – Тейлора; методом ионного распыления;
		32;ПК-2-33;ПК-2-	методом плазменного напыления; методом вакуумного напыления;
		34	методом механоактивационного синтеза).
			2. Какие кинетические факторы следует учитывать для оценки
			склонности сплава к аморфизации?
			3. Какие термодинамические факторы следует учитывать для оценки склонности сплава к аморфизации?
			4. Какое состояние можно считать наноструктурным?
			5. В чем состоят сложности и особенности получения
			наноструктурного состояния?
			6. Опишите получение нанокластеров методом сверхзвукового
			истечения частиц из сопла.
			7. Опишите получение наноразмерных порошков методами
			газофазного синтеза.
			8. Опишите методы получения нанокластеров и металлических
			нанопорошков путем ионной бомбардировки.
			9. Опишите методы получения нанокластеров и металлических нанопорошков путем вакуумного испарения.
			10. Опишите методы получения нанокластеров и металлических
			нанопорошков путем катодного распыления.
			11. Опишите методы получения нанопорошков с помощью
			низкотемпературной плазмы и плазмохимическим синтезом.
			12. Опишите получение наночастиц методом диспергирования.
			13. Опишите получение наночастиц методом механохимического
			синтеза.
			14. Опишите получение наночастиц методом осаждения из жидкой
			фазы. 15. Опишите получение нанокристаллического состояния пленок
			путем отжига и частичной кристаллизации
			аморфных лент, полученных спиннингованием из расплава.
			16. Опишите метод интенсивной пластической деформации.
			17. В чем сущность литографических методов получения
			нанообъектов?
			18. Опишите основные методы получения и разделения
			фуллеренов.
			19. Опишите основные методы получения нанортубок. 20. Каковы особенности получения микрокристаллических лент
			закалкой из расплава?
			21. Формирование микрокристаллической структуры посредством
			рекристаллизации и фазовых превращений.
			22. Какие процессы (структурные изменения) обусловливают
			переход аморфных сплавов при нагревании (отжиге) в состояние
			равновесия и по какому признаку классифицируются процессы
			структурной релаксации и физические свойства, связанные с этими
			процессами? 23. Что такое свободный объем аморфной фазы, зависит ли его
			величина от кинетики получения аморфной фазы?
			24. Каковы закономерности кинетики релаксации изгибных
			напряжений?
			25. В чем состоит суть явления вязко-хрупкого перехода
			(охрупчивания) аморфных сплавов? Для каких аморфных сплавов
			характерно это явление?
			26. При каких условиях деформирования аморфные сплавы
			проявляют высокую пластичность? С помощью какого параметра
			оценивают пластичность аморфных сплавов? Как он определяется? 27. Как оценивают склонность аморфных сплавов к
			охрупчиванию? Какой параметр отражает степень склонности этих
			сплавов к охрупчиванию и как он зависит от условий эксперимента
			(времени отжига ta)?
			28. Какие закономерности влияния состава и легирования на
			склонность к охрупчиванию характерны для аморфных сплавов?
			29. Как склонность к охрупчиванию зависит от геометрических
			параметров ленточных образцов аморфных сплавов, а
			следовательно, от способа ведения процесса закалки из жидкого
			состояния?
			30. Какие факторы могут обусловить эффект анизотропности

		параметра охрупчивания Tf? 31. Каковы закономерности влияния, количества и соотношения неметаллических элементов на термическую стабильность
		(температуру Тх) аморфных сплавов?
		32. Какие наблюдается закономерности по влиянию металлических
		элементов на термическую стабильность АС? Как
		интерпретируются эти закономерности?
		33. Каковы особенности гистерезисных магнитных свойств АС и
		какие причины их определяют?
		34. Какое микроструктурное строение имеют быстрозакаленные
		сплавы системы Fe-Si и какие условия охлаждения и механизмы
		кристаллизации определяют возникновение тех или иных зон
		микроструктуры?
		35. Какие специфические «закалочные» дефекты характерны для
		микрокристаллических сплавов с ОЦК решеткой, в частности, для
		сплавов системы Fe-Si, и какие факторы определяют их появление?
		36. Какие фазовые состояния характерны для сплавов системы Fe-
		Si в равновесном состоянии и для сплавов,полученных закалкой из
		расплава?
		37. Какие структурно-фазовые состояния могут влиять на
		пластичность микрокристаллических сплавов системы Fe-Si?
		38. Какие структурные превращения происходят при отжиге
		быстрозакаленных микрокристаллических сплавов системы Fe-Si и
		в чем проявляется их специфика? Как эти превращения влияют на
		уровень магнитных свойств и механическое состояние сплавов
		системы Fe-Si?
		39. Каковы физические основы создания редкозмельных магнитов?
		40. Опишите особенности фазово-структурного состояния,
		обеспечивающее формирование высококоэрцитивного состояния
		быстрозакаленных сплавов системы Nd-Fe-B.
5.2. Переч	ень работ, выполняемых по дисципл	ине (Курсовая работа, Курсовой проект, РГР, Реферат, ЛР, ПР и т.п.)
	I	

Код работы	Название работы	Проверяемые индикаторы компетенций	Содержание работы
P1	Практическое занятие 1	ОПК-2-У1;ПК-2-У1	Сопоставление данных различных исследований с расчетными данными о функции радиального распределения атомов, полученных исходя из различных известных моделей аморфной структуры
P2	Практическое занятие 2	ПК-1-У2;ПК-1- У3;ПК-1-В1;ПК-1- В2;ПК-2-У2	Модели структур аморфного состояния. Характеристика аморфизирующихся металлических систем. Сплавы металлметаллоид, металл-металл. Особенности структуры реальных аморфных материалов.
Р3	Практическое занятие 3	ОПК-2-У1;ПК-1- У2;ПК-1-У3;ПК-1- В1;ПК-1-В2;ПК-1- В3;ПК-2-У2;ПК-2- В2;ПК-2-В3	Механические, электрические, тепловые и магнитные свойства аморфных материалов. Магнитомягкие, инварные и элинварные аморфные сплавы
P4	Практическое занятие 4	ПК-1-У1;ПК-1- У2;ПК-1-У3;ПК-1- В1;ПК-1-В2;ПК-1- В3;ПК-2-У2;ПК-2- В1;ПК-2-В2;ПК-2- В3	Перспективы применения аморфных материалов. Положительные и отрицательные качества аморфных материалов
P5	Контрольная работа №1	ОПК-2-У1;ПК-1- У1;ПК-1-У2;ПК-1- У3;ПК-2-У1;ПК-2- У2	Структура и свойства аморфных сплавов
P6	Практическое занятие 5	ОПК-2-У1;ПК-1- У2;ПК-1-У3;ПК-1- В1;ПК-1-В2;ПК-1- В3;ПК-2-У1;ПК-2- У2;ПК-2-В1;ПК-2- В2	Влияние технологических факторов на качество нано- и микрокристаллических материалов

P7	Контрольная работа №2	ОПК-2-В1;ПК-1- В1;ПК-1-В2;ПК-1- В3;ПК-2-В1;ПК-2- В2;ПК-2-В3	Применение аморфных, нано- и микрокристаллических материалов
P8	Домашнее задание №1	ОПК-2-У1;ОПК-2- В1;ПК-2-33;ПК-2- У1	Поиск и анализ статьи (не старше шести лет) о моделировании структуры аморфной фазы, к статье нужно подготовить в файле Word краткий отчет об основных подходах в рассматриваемой модели, о ее результатах и о возможном экспериментальном подтверждении модели
P9	Домашнее задание №2	ОПК-2-У1;ОПК-2- В1;ПК-1-У1;ПК-1- В2;ПК-1-В3;ПК-2- У1;ПК-2-У2;ПК-2- В1;ПК-2-В2;ПК-2- В3	Рассмотреть изменение дифракционного спектра для сплава 2НСР (выдается пеподавателем) после отжигов при 375, 400, 410 и 425 С (в названии файлов — температуры обработки). В файле excel привести все спектры, полученные после различных температур отжига, в отдельном файле Word подготовить отчет, в котором дать описание каждого спектра, привести сравнительный анализ спектров и высказать предположение о последовательности возможных превращений в этом сплаве.
P10	Домашнее задание №3	ОПК-2-У1;ОПК-2- В1;ПК-1-У1;ПК-1- У2;ПК-1-В1;ПК-1- В2;ПК-1-В3	Поиск и анализ статьи с описанием особенностей кристаллической структуры (параметры решетки, объем элементарной ячейки, точечная группа, сингония, особенности симметрии и т.п) в наноструктурном состоянии по сравнению с массивным материалом, к статье нужно подготовить в файле Word краткий отчет об основных особенностях наноструктурного состояния и влияния изменившихся структурных характеристик на физические или механические свойства.

5.3. Оценочные материалы, используемые для экзамена (описание билетов, тестов и т.п.)

По курсу предусмотрен экзамен.

Экзаменационный билет состоит из 3 заданий, типовые вопросы экзамена приведены в вопросах самоподготовки. Пример экзаменационного билета размещен в приложении к РПД.

Задание 1 - теоретический вопрос из раздела 1;

Задание 2 - теоретический вопрос из раздела 2;

Задание 3 - теоретический вопрос из раздела 3.

5.4. Методика оценки освоения дисциплины (модуля, практики. НИР)

Шкала оценивания знаний обучающихся на экзамене:

Оценка «отлично» - обучающийся показывает глубокие, исчерпывающие знания в объеме пройденной программы, уверенно действует по применению полученных знаний на практике, грамотно и логически стройно излагает материал при ответе, умеет формулировать выводы из изложенного теоретического материала, знает дополнительно рекомендованную литературу.

Оценка «хорошо» - обучающийся показывает твердые и достаточно полные знания в объеме пройденной программы, допускает незначительные ошибки при освещении заданных вопросов, правильно действует по применению знаний на практике, четко излагает материал.

Оценка «удовлетворительно» - обучающийся показывает знания в объеме пройденной программы, ответы излагает хотя и с ошибками, но уверенно исправляемыми после дополнительных и наводящих вопросов, правильно действует по применению знаний на практике;

Оценка «неудовлетворительно» - обучающийся допускает грубые ошибки в ответе, не понимает сущности излагаемого вопроса, не умеет применять знания на практике, дает неполные ответы на дополнительные и наводящие вопросы. Оценка «не явка» – обучающийся на экзамен не явился.

Возможно проставление оценки за экзамен на основе оценок контрольных мероприятий семестра.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ 6.1. Рекомендуемая литература 6.1.1. Основная литература Заглавие Библиотека Издательство, год Авторы, составители Л1.1 Библиотека МИСиС Прокошин А. Ф., Аморфные металлические М.: Металлургия, 1987 Люборский Ф. Е. сплавы: пер. с англ. : монография Л1.2 Кекало И. Б., Аморфные нано- и М.: Изд-во МИСиС, 2008 Электронная библиотека Шуваева Е. А. микрокристаллические магнитные материалы: лаб. практикум: учеб. пособие для студ. вузов напр. Физ. материаловедение и спец. Наноматериалы

	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л1.3	Левина В. В., Конюхов Ю. В., Филонов М. Р., др.	Физико-химия наноструктурных материалов: лаб. практикум: учеб. пособие для студ. вузов, обуч. по напр. 150700 - Физическое материаловедение	Электронная библиотека	М.: Изд-во МИСиС, 2010
Л1.4	Кекало И. Б., Менушенков В. П.	Быстрозакаленные магнитно- твердые материалы системы Nd-Fe-B: Курс лекций для студ. физхим. фак-та	Библиотека МИСиС	М.: Учеба, 2000
Л1.5	Кекало И. Б., Введенский В. Ю., Нуждин Г. А., Кекало И. Б.	Микрокристаллические магнитно-мягкие материалы: Курс лекций для студ. физхим. фак-та	Библиотека МИСиС	М.: Учеба, 1999
Л1.6	Кекало И. Б.	Аморфные магнитные материалы: Разд.: Получение, процессы аморфизации, атомное строение, свойства: Курс лекций для студ. направл. 651800 и 654100	Библиотека МИСиС	М.: Учеба, 2001
Л1.7	Кекало И. Б.	Нанокристаллические магнитно-мягкие материалы: курс лекций для студ. физхим. фак-та	Библиотека МИСиС	М.: Учеба, 1999
Л1.8	Кекало И. Б.	Аморфные магнитные материалы: Модели структуры, дефекты, релаксационные процессы: Курс лекций для студ. направл. 651800, 654100	Библиотека МИСиС	М.: Учеба, 2002
Л1.9	Кекало И. Б.	Атомная структура аморфных сплавов и ее эволюция: учеб. пособие для студ. вузов напр. 'Физ. материаловедение'	Библиотека МИСиС	М.: Учеба, 2006
Л1.10	Дзидзигури Э. Л., Сидорова Е. Н.	Процессы получения наночастиц и наноматериалов. Нанотехнологии: учеб. пособие	Библиотека МИСиС	М.: Изд-во МИСиС, 2012
Л1.11	Кекало И. Б.	Процессы структурной релаксации и физические свойства аморфных сплавов. В 2 т. Т. 1: монография	Электронная библиотека	М.: Изд-во МИСиС, 2013
Л1.12	Кекало И. Б.	Процессы структурной релаксации и физические свойства аморфных сплавов. Т. 2: монография	Электронная библиотека	М.: Изд-во МИСиС, 2016
		6.1.2. Дополните.	льная литература	
	Авторы, составители	Заглавие	Библиотека	Издательство, год
Л2.1	Рыжонков Д. И., Лёвина В. В., Дзидзигури Э. Л.	Наноматериалы: учебное пособие	Электронная библиотека	Москва: Лаборатория знаний, 2017
Л2.2	Лившиц Б. Г.	Металлография: учебник для студ. металлург. спец. вузов	Библиотека МИСиС	М.: Металлургия, 1990

	Авторы, составители	Заглавие	Библиотека	Издательство, год			
Л2.3	Пустов Ю. А.	Перспективные коррозионно- стойкие материалы и технологии защиты металлов от коррозии. Аморфные и нанокристаллические материалы (методы получения, структура и	Электронная библиотека	М.: Изд-во МИСиС, 2010			
		коррозионная стойкость): курс лекций: учеб. пособие для студ. вузов, обуч. по напр. 150700 - Физическое материалловедение, спец. 150701 - Физико-химия процессов и материалов					
Л2.4	МИСиС, Скаков Ю. А.	Вып.147: Аморфные металлические сплавы: Сб.статей	Библиотека МИСиС	М.: Металлургия, 1983			
6.1.3. Методические разработки							
	Авторы, составители	Заглавие	Библиотека	Издательство, год			
Л3.1	Горелик С. С., Скаков Ю. А., Расторгуев Л. Н.	Рентгенографический и электронно-оптический анализ: учеб. пособие для вузов	Электронная библиотека	М.: Изд-во МИСиС, 2002			
Л3.2	Дзидзигури Э. Л., Сидорова Е. Н.	Ультрадисперсные среды: Методы рентгеновской дифрактометрии для исследования наноматериалов: учеб. пособие	Библиотека МИСиС	М.: Учеба, 2007			
Л3.3	Мельниченко А. С.	Анализ данных в материаловедении. Ч. 1: учеб. пособие для студ. вузов, обуч. по напр. 150700 - Физическое материаловедение и Металлургия	Библиотека МИСиС	М.: Изд-во МИСиС, 2013			
Л3.4	Мельниченко А. С.	Анализ данных в материаловедении. Ч. 2. Регрессионный анализ: учеб. пособие для студ. вузов, обуч. по напр. 'Металлургия'	Библиотека МИСиС	М.: Изд-во МИСиС, 2014			
6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»							
Э1	сайт: "МСТАТОР"-производство магнитомягких материалов и электромагнитных компонентов		https://mstator.ru/amorfnye-i-nano magnitomyagkie-materialy				
Э2	«Об обеспечении единства измерений»(с изменениями на 13 июля 2015 года)		http://docs.cntd.ru/document/9021				
Э3	ГОСТ 8.563-2009. Государственная система обеспечения единства измерений. Методики (методы) измерений Переизд. февраль 2019 М.: Стандартинформ, 2019		http://docs.cntd.ru/document/1200				
Э4	ГОСТ 16504-81. Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определенияПереизд 2011 М.: Стандартинформ, 2011		http://docs.cntd.ru/document/1200				
Э5	ГОСТ 15.101-98 Система разработки и постановки продукции на производство (СРПП). Порядок выполнения научно-исследовательских работ-Переизд. Сент. 2010 М.: Стандартинформ, 2010		http://docs.cntd.ru/document/1200	003945			

96	ГОСТ 7.32-2001. Отчет о научно- исследовательской работе. Структура и правило оформления Введ 2002-07-01 М.: Изд-во стандартов, 2001.	http://docs.cntd.ru/document/1200026224			
97	ГОСТ 8.377-80. Государственная система обеспечения единства измерений. Материалы магнитомягкие. Методика выполнения измерений при определении статических магнитных характеристикМ.: Издательство стандартов, 1980	http://docs.entd.ru/document/1200014136			
6.3 Перечень программного обеспечения					
П.1	Лицензии ПО Windows Server CAL ALNG LicSAPk MVL DvcCAL, ПО WinEDUA3 ALNG SubsVL MVL PerUsr и PerUsr				
П.2	ESET NOD32 Antivirus				
П.3	Win Pro 10 32-bit/64-bit				
П.4	Microsoft Office				
П.5	MS Teams				
6.4. Перечень информационных справочных систем и профессиональных баз данных					
И.1	Полнотекстовые российские научные журналы и статьи:				
И.2	— Научная электронная библиотека eLIBRARY https://elibrary.ru/				
И.3	— Полнотекстовые деловые публикации информагентств и прессы по 53 отраслям https://polpred.com/news				
И.4	Иностранные базы данных (доступ с ІР адресов МИСиС):				
И.5	— аналитическая база (индексы цитирования) Web of Science https://apps.webofknowledge.com				
И.6	— аналитическая база (индексы цитирования) Scopus https://www.scopus.com/				
И.7	— наукометрическая система InCites https://apps.webofknowledge.com				
И.8	— научные журналы издательства Elsevier https://www.sciencedirect.com/				

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ					
Ауд.	Назначение	Оснащение			
Б-416	Учебная аудитория	проектор; экран; маркерная доска; компьютер преподавателя; микроскоп Carl Zeiss Axio Scope A1, компьютерный класс на 12 компьютеров, комплект учебной мебели			
Б-420	Учебная аудитория	проектор; мультимедийная доска; маркерная доска, документ-камера; компьютер преподавателя; микроскопы металлографические 11 шт., комплект учебной мебели			
Б-413	Учебная аудитория	проектор; мультимедийная доска; маркерная доска, документ-камера; компьютер преподавателя; компьютерный класс на 14 компьютеров, пакет лицензионных программ MS Office, комплект учебной мебели			
Читальный зал №3 (Б)		комплект учебной мебели на 44 места для обучающихся, МФУ Хегох VersaLink B7025 с функцией масштабирования текстов и изображений, 8 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.			
Читальный зал №4 (Б)		комплект учебной мебели на 20 рабочих мест, компьютеры с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду университета			
Читальный зал электронных ресурсов		комплект учебной мебели на 55 мест для обучающихся, 50 ПК с доступом к ИТС «Интернет», ЭИОС университета через личный кабинет на платформе LMS Canvas, лицензионные программы MS Office, MS Teams, ESET Antivirus.			

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

При изучении курса «Аморфные, микро- и нанокристаллические материалы» большое внимание следует уделить самостоятельной работе с учебниками, справочной литературой и текущими публикациями в ведущих российских и

П: 22.04.01-ММТМ-23-7.plx

зарубежных журналах по рассматриваемым темам курса. Большую часть вопросов, возникающих в процессе самостоятельной подготовки, рекомендуется выносить для обсуждения на практических занятиях для наиболее полного понимания современных проблем в области материаловедения аморфных, нано- и микрокристаллических сплавов. Обучение проводится в один семестр и организуется в соответствии с настоящей программой. Самостоятельная работа студентов осуществляется и контролируется с помощью:

- вопросов для самоконтроля,
- двух письменных контрольных работ,
- двух домашних заданий.

Контрольные работы проводятся в часы семинарских занятий.

Возможно получение экзамена автоматически на основании оценок за контрольные и домашние задания, оценка проставляется как среднеарифметическая за все перечисленные контрольные мероприятия, оцениваемые по пятибалльной системе.

Перед началом занятий студенты получают на текущий семестр календарный план проведения практических занятий и контрольных работ, график выдачи и сдачи домашних заданий.

Для успешного освоения изучаемой дисциплины для студентов организуются еженедельные консультации преподавателей в компьютерном классе.